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I. Introduction.

ollective nuclear excitations of rotational and vibrational
character have been observed to occur systematically 

throughout most of the periodic table. Such states are populated 
in radioactive decay processes, and are also produced in in­
elastic scattering reactions. In particular, the Coulomb excita­
tion process, which has been developed in recent years, has 
proved a powerful tool in the study of low-lying collective excita­
tions in nuclei.

It has been possible to interpret many of the observed features 
of the collective spectra by comparing the collective modes of 
motion of the nucleus with the oscillations of an irrotational 
fluid*  (A. Bohr, 1952; K. Ford, 1953; A. Bohr and B. R. Mottel- 
son, 1953). In such a model, the excitation spectrum depends 
essentially on the nuclear equilibrium shape; it is thus of decisive 
importance that, in contrast to the case of an amorphous liquid 
drop, nuclei may acquire large equilibrium deformations as a 
consequence of their shell structure (Rainwater, 1950).

The nuclear shape depends on the configuration of the 
nucleons. In the vicinity of closed shells, the equilibrium shape 
is approximately spherical, and the expected collective spectrum 
corresponds to a set of normal vibrations, of which the lowest 
energy modes will be of quadrupole type.

In regions far removed from closed shells, the nuclear equi­
librium shape deviates strongly from spherical symmetry, and 
the oscillation spectrum can be separated into shape oscillations 
and a rotational type of motion. In such a description the rota­
tional motion is of wave-like character with the moment of inertia 
depending essentially on the deformation.

* Collective nuclear excitations similar to the vibrations of a liquid drop 
were first considered by N. Bohr and F. Kalckar (1937).

1*
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The observed nuclear collective spectra are found to follow 
such a general pattern. Thus, rotational spectra, characterized 
by their numerous regularities regarding energy ratios, spin 
sequences, and transition intensities, are associated with nuclei 
which exhibit large quadrupole moments and have especially 
been observed in the regions 150 < A < 190 and A > 225. The 
moments of inertia are found to be appreciably smaller than 
corresponding to rigid rotation and to increase markedly with 
the deformation.*

In other regions of elements where the nuclear equilibrium 
shape, especially in even-even nuclei, is more nearly spherical, 
the collective excitations have been found to have many of the 
characteristics of quadrupole vibrations about a spherical equi­
librium (Scharff-Goldiiaber and Weneser, 1955).

In the more detailed analysis of the nuclear collective spectra, 
it is found that the shell structure not only determines the nuclear 
equilibrium shape, but also has an important influence on other 
aspects of the nuclear potential energy surface as well as on the 
character of the collective flow.

Thus, the restoring force for the vibrational motion is expected 
to decrease rather rapidly as one moves away from closed-shell 
configurations; indeed, such an effect is observed in the trends 
of the vibrational frequencies.

The structure of the collective How manifests itself in the 
mass transport associated with this motion, which can be de­
termined from the observed excitation energies. It is found that 
the rotational moments of inertia as well as the inertial para­
meters for the vibrational motion are considerably larger than 
corresponding to the model of irrotational flow.**

In the present paper, we consider the analysis of the moments 
of inertia for rotating nuclei in terms of the motion of tin1 nucleons.

* For a discussion of rotational spectra and a survey of empirical data, cf., 
e. g., Bohr and Mottelson (1955); A. Bohr (1954). Cf. also Alaga, Alder, Bohr, 
and Mottelson (1955) and Bohr, Fröman, and Mottelson (1955) for the intens­
ity rules, and the forthcoming review article on Coulomb excitation by Alder, 
Bohr, Huus, Mottelson, Winther, and Zupancic.

** The detailed estimate of the moment of inertia for irrotational flow is 
somewhat uncertain due to the possible difference between the density distribu­
tion of neutrons and protons, as well as to the influence of higher multipoles in 
the nuclear shape. Estimates of these effects indicate, however (cf. Gustafson, 
1955), that they are too small to account for the magnitude of the observed mo­
ments.
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The treatment follows the method discussed by Inglis (1954), 
in which the kinetic energy of rotation is obtained by considering 
the motion of the nucleons in the rotating self-consistent field.

The corresponding collective Hamiltonian for a system of 
interacting nucleons is discussed in §2, while the evaluation of 
the moments of inertia is treated in § 3. For independent particle 
motion in an average nuclear field, the rotational moments of 
inertia are found to be approximately those corresponding to 
rigid rotation. However, the correlations in the nucleonic motion 
arising from residual interactions modify this result in an essential 
manner, and give rise, for small deformations, to a wave-like 
rotational motion. The absolute value of the moments of inertia 
depends inversely on the strength of the residual interactions, 
and the moments corresponding to irrotational flow are only 
approached when the interactions become comparable to the 
effect of the average field and so destroy the entire shell structure.

The observed moments, discussed in § 4, indicate a strength 
of interaction about three limes smaller than corresponding to 
this strong interaction limit. Such an estimate of the interactions 
appears to be consistent with that obtained from other evidence. 
The residual interactions are also found to be responsible for the 
transition from rotational to vibrational collective spectra in the 
even-even nuclei with the approach to closed-shell regions.

II. Relation between Collective Hamiltonian and 
Nucleonic Motion.

Collective nuclear excitation spectra of vibrational or rota­
tional type are expected to occur when the corresponding col­
lective mode of motion is slow compared to the intrinsic motion 
of the nucleons. When this adiabatic condition is fulfilled, the 
nucleus will possess, for each state of the intrinsic structure, a 
spectrum of collective excitations.

The collective motion is described in terms of a set of co­
ordinates a which, in the case of rotations, represent the angles 
of orientation of the nucleus; for vibrations, the collective co-ordin­
ates may be chosen to represent the amplitudes of normal 
oscillations.
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The Hamiltonian for the collective motion may be obtained 
by considering the nucleonic motion for slowly varying a. Ex­
panding the energy of the nucleons in powers of the time deriv­
ative a, one obtains to a first approximation an expression of 
the type

Hcoll = E («) + V) B («) (1)

which thus represents the collective Hamiltonian. The first term 
in this expression, which is the nucleonic energy for fixed «, 
gives the potential energy for the collective motion, while the 
second term, involving an inertial coefficient B («), gives the 
collective kinetic energy. Both the functions E (a) and B (a) may 
depend on the intrinsic state of the nucleonic motion.

The problem of obtaining the collective nuclear Hamiltonian 
is similar to the adiabatic derivation of the rotation-vibration 
Hamiltonian for molecules. In the molecular case, however, the 
inertial parameter B is to a good approximation given by the 
nuclear motion, while the electronic contribution to the mass 
transport constitutes only a small correction.

The collective nuclear co-ordinates are themselves functions 
of the nucleonic variables (cf. below), and the nucleonic motion 
for prescribed a is therefore a constrained motion. The con­
straints express the condition that the shape and orientation of 
the nucleonic system as a whole have the prescribed values. Thus, 
if the major part of the interactions can be represented by a self- 
consistent field, the constraints are approximately satisfied if one 
considers the motion of the nucleons in a field of the prescribed 
shape and orientation.

We may thus find the Hamiltonian (1) by treating the 
nucleonic motion in the time-dependent potential V (o (f)) 
(Inglis, 1954, 1955). This motion is described by a Hamil­
tonian of the form

H = V7’„+yvo„, «(/)) +C, (2)
p p

where xp represents the co-ordinates of the plh nucleon. The 
first term in (2) is the nucleonic kinetic energy, the second term 
represents the average potential which is here a function of t, while 
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the last term represents residual effects of the nucleonic inter­
actions not included in the average field.

For fixed a, we denote by and Et the proper functions 
and energies of (2) obeying

H (a) = Et («) (3)

These energy values Et give the potential energy functions in (1).
For slowly varying a, the solution to the Hamiltonian problem 

(2) may be obtained by means of a time-dependent perturbation 
calculation. If there is no degeneracy in the static problem, the 
energy increase of the system resulting from the motion of the 
field is proportional to cc2 to leading order, and for the inertial 
parameter in (1), appropriate to the state y0, one finds (Inglis,
1955)

(4)

In the special case of rotations of axially symmetric nuclei, 

the mass parameter (4) gives the moment of inertia 3 gener­

ates a rotation about an axis perpendicular to the nuclear symme­
try axis.

One thus obtains

d = (5)

where Jx is the total angular momentum of the particles about 
the intrinsic .r-axis, which has been chosen perpendicular to the 
nuclear symmetry axis z.

The solution of the time-dependent problem (2) also determ­
ines other collective properties of the system. Thus, for the gyro- 
magnetic ratio of the rotational motion, one obtains

where the magnetic moment operator is given by

(6)
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in terms of the orbital and spin contributions of the individual 
particles.

The simple separation between collective and intrinsic motion 
corresponding to the Hamiltonian (1) is possible when the 
time-dependence of the nuclear field implies only a small modi­
fication of the motion of the individual nucleons with respect to 
the field. The adiabatic treatment employed above is then appro­
priate, and the dynamic effect of the motion of the field can be 
represented by the collective kinetic energy in (1).

If, however, there are near-lying intrinsic states which are 
strongly coupled by the motion of the field, the perturbation 
treatment may break down. The nucleus must then be treated 
in terms of a coupled system of collective motion and the in­
trinsic degrees of freedom involved. This situation is, for instance, 
met with in the partial decoupling between the rotational motion 
and the spin of the last odd nucleon in rotational spectra with 
an angular momentum component of K = 1/2 along the symme­
try axis (cf. references in footnote on p. 4). Indeed, the level struc­
ture in odd-A nuclei is such that the motion of the last odd nucleon 
may quite frequently be somewhat perturbed by the rotational 
motion (Kerman, 1955; cf. also the odd-even moments of inertia 
differences discussed below (p. 22)).

The simple derivation of the collective Hamiltonian con­
sidered above exhibits the main physical conditions underlying 
the separation between collective and intrinsic motion. A more 
detailed treatment may be obtained in terms of a canonical 
transformation of the equations of motion which describe the 
system of interacting nucleons. In such a way one may introduce 
partly a set of collective co-ordinates «, and partly a set of co­
ordinates q describing the intrinsic motion.

Various aspects of such a transformation have been considered 
in a number of recent papers (A. Bohr, 1954; Süssmann, 1954; 
Tolhoek, 1955; Tomonaga, 1955; Coester, 1955; Nataf, 1955; 
Marumori, Yukawa, and Tanaka, 1955; Villars, 1955; Lipkin, 
De Siialit, and Talmi, 1955). Without intering into a detailed 
discussion of this approach, we shall attempt, with the following 
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general remarks, to indicate its relationship to the above derivation 
of the collective Hamiltonian.

The transformed Hamiltonian may be written in the form

•H -Hint (7> 7’ T T’coll + -Hcoupl (7> Q’ > (8)

where the first term describes the intrinsic motion for fixed a. 
The second term represents the collective kinetic energy (cf. 
the second term in (1)), while the last term in (8) contains 
the couplings between the intrinsic and collective motion. These 
couplings partly describe the effect on the nucleonic motion of 
the time-dependence of the collective field, as contained in (2). 
In addition, the transformation introduces a second type of coup­
ling terms associated with the fact that part of the inertial effect 
implied by the first type of coupling is already contained in Tcoll. 
The second type of coupling thus tends to screen off the first type, 
and the problem is to choose the collective co-ordinates a in such 
a way that these two contributions approximately cancel; the 
major part of the dynamic effects associated with the motion of 
the nuclear field is then contained in Tcoll, and the inertial para­
meter for the collective motion is thus expected to be given by (4).

If one can in such a manner obtain a Hamiltonian in which 
HCOUpi is small, one gets approximate solutions to the wave equation 
of the adiabatic form

V7 — («) (q, a), (9)

where ipt (q, a) represents the intrinsic motion for fixed «, while 
(ce) gives the collective motion specified by the quantum 

numbers v.
An especially simple class of transformations is that which 

introduces a collective motion of irrotational character. If we 
further assume incompressible llow, the collective co-ordinates 
are given by (cf. Bonn and Mottelson, 1953, p. 10; A. Bohr, 
1954)

’’p)’ (10)
p

which represent the mass multipole moments.
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For a system such that a transformation of the type (10) 
leads to separation of the motion, the collective motion can be 
described in terms of an irrotational flow obeying hydrodynam­
ical equations (A. Bohr, 1954). The moment of inertia is then 
directly related to the density distribution; thus, for a spheroid 
of constant density one obtains, for small deformations,

Sirrot = |dJ/(/l/n2 (H)

in terms of the difference AR between the major and minor semi­
axes. The nuclear mass number and the nucleonic mass are 
denoted by A and M, respectively.

A closed-shell configuration in an anisotropic harmonic oscil­
lator field would provide a very special case in which a separation 
between intrinsic and rotational motion is obtained by a transform­
ation of the type (10)*.  The appropriate collective angles are 
then defined in terms of the principal axes of the quadrupole 
mass tensor. It has also been verified that, in this ease, the expres­
sion (5) yields the irrotational moment (11) (Inglis, 1954; cf. 
also p. 11 below).

For most systems, however, a transformation of the type 
(10) leaves important residual coupling terms, which imply a 
very intricate interweaving between the intrinsic motion and the 
collective motion associated with these particular collective co­
ordinates. Still, provided the adiabatic condition is fulfilled, the 
system will possess simple collective modes of excitation, since 
the couplings may be incorporated in a modified collective 
motion. In order to exhibit the corresponding separation of the 
Hamiltonian, a co-ordinate transformation of a more general 
type than (10) is needed, and the collective How is no longer of 
irrotational character.

III. Estimates of Rotational Moments of Inertia for the 
Nuclear Shell Structure.

The expression (5) for the moment of inertia depends quite 
sensitively on the character of the nucleonic motion.

* This case has also been noted by Lipkin, de Shalit, and Talmi (1955).
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We first consider the limiting situation in which the intrinsic 
nuclear structure may be described in terms of the independent 
motion of the nucleons in the average potential. A closed expres­
sion for the sum in (5) may be obtained in the case of an aniso­
tropic harmonic oscillator potential with no spin-orbit coupling. 
For a rotation about one of the principal axes, x, one obtains

where œy and coz are the oscillator frequencies along the y- and 
z-axis, while ny and nz are the corresponding oscillation quantum 
numbers.

In the case of a single particle in the lowest state (nx = ny 
= nz — 0), the moment (12) is just that corresponding to ir- 
rotational llow of the average density distribution of the particle. 
Indeed, this result is valid for the ground state in an arbitrary 
potential (Wick, 1947). Again for many-particle configurations 
consisting entirely of closed shells (occupation a function only 
of N — nx + ny + nz), the last term in (12) vanishes and the 
moment has the irrotational value (11) with its characteristic 
dependence on the square of the eccentricity (Inglis, 1954).

For a closed-shell configuration, however, the nuclear equi­
librium shape is spherical and the moment of inertia vanishes. 
The strongly deformed nuclei, which possess rotational spectra, 
have configurations deviating essentially from closed shells. The 
last term in (12) then gives important contributions implying 
considerable deviation from irrotational flow in the collective 
motion of the particles.*

Instead, in the limit of many nucleons, the moment of inertia 
tends towards that corresponding to rigid rotation of the average 
density distribution. Thus, the expression (12) approaches the 
value

* Such additional terms in the moment of inertia have also been considered 
by R. J. Blin-Stoyle and V. F. Weisskopf (private communication), who have 
treated nuclear potentials other than those of harmonic oscillator type. For such 
potentials, even closed-shell configurations may give moments exceeding the 
irrotational value.
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grig = > M(y-+zDP = h y ( "*  ±1/2 + 7,2 + 1/2 

p — \ CD.. CD.

* Sessler and Foley (1954) have considered a problem which in certain 
respects is similar to that discussed here. They find that a Thomas-Fermi treat­
ment of an atom with a net angular momentum leads to a collective flow corre­
sponding to rigid rotation.

** The closed-shell configurations form a singular exception to this result, 
since they have spherical equilibrium shape and a vanishing moment of inertia.

p if x

in the case of the ground state configuration.
This approach to the rigid moment is independent of the 

potential in which the particles move, as can be seen by employ­
ing the statistical approximation. The problem is considered 
most simply by going over to the rotating co-ordinate system 
where the potential is independent of time, but where the Coriolis 
and centrifugal forces must be added to the kinetic energy. 
In the absence of rotation, the velocity distribution is isotropic 
at each point, and the Coriolis forces cannot alter this situation 
to first order in the rotational frequency. Therefore, to this order, 
there is no net current in the rotating co-ordinate system, and 
the average flow is like that of a rigid body.*

Since the first-order effects of the rotation are equivalent to 
the effect of a magnetic field, the absence of an induced flow in 
the rotating co-ordinate system corresponds to the absence of 
diamagnetic effects in a classical electron gas (N. Bonn, 1911).

For a finite number of independent nucleons in an average 
potential, there may be rather large fluctuations of the moment 
of inertia (5) about the value $rig. Thus, if the sum (12) is 
evaluated for a fixed deformation as a function of the number 
of nucleons, one finds quite violent fluctuations even for A ~ 250 
and deformations of the observed order of magnitude. However, 
the fluctuations are much smaller if one considers, for each 
configuration, the self-consistent deformation, obtained by mini­
mizing the total energy as a function of the deformation subject 
to the constraint of constant volume. In the harmonic oscillator 
case, the fluctuations then disappear, and one obtains just the 
rigid moment independent of configuration.**  For other potent­
ials in which the level structure is less regular, there may still 
remain some fluctuations in the moment associated with the 
binding of the last few particles.
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Thus, if the intrinsic nuclear structure could he described in 
terms of undisturbed independent particle motion, one would 
expect essentially the rigid moment of inertia. However, the 
inclusion of correlations in the nucleonic motion, arising from 
even relatively weak interactions, has an important influence on 
the collective motion and the resulting moment of inertia.*

* The possible significance of the residual interactions for the nuclear moments 
of inertia has been suggested in a somewhat different context by Ford (1954) 
and Inglis (1954). These authors anticipate an effect opposite to that obtained 
below, since they assume the independent particle approximation to give irrota- 
tional flow.

The coupling scheme for a nuclear shell structure with the 
inclusion of particle interactions depends on the competition 
between the coupling effect of these interactions and the coupling 
of the particles to the nuclear deformation (cf. Bohr and 
Mottelson, 1953, § lie, and especially fig. 6). For small deform­
ations, where the former effect dominates, the particle angular 
momenta are coupled together to a resultant .7; for large de­
formations, the latter effect is dominant, and the particles are 
coupled independently to the nuclear axes.

For an even-even nucleus, short-range attractive forces favour 
a state of .7 — 0 (Mayer, 1950; Edmonds and Flowers, 1952; 
Racah, 1952). For small deformations, for which the ground 
state wave function may be expanded in powers of the deform­
ation, one thus has

W = y) (J = 0) + ßip (J 0) + • • • •, (14)

where ß is the conventional deformation parameter for ellipsoidal 
shapes defined by

in terms of the mean nuclear radius 7?0 and the difference AR 
between major and minor semi-axes. The first term in the wave 
function (14) does not contribute to the moment of inertia (5) 
and one therefore obtains

3 = const ß2. (16)
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The proportionality constant in (16) depends inversely on the 
excitation energies for the admixed states in (14), and thus on 
the strength of the interactions.

In the other limit of large deformations, one approaches the 
independent particle situation with the resulting rigid moment of 
inertia.

Some insight into the gradual transition between the two coup­
ling schemes may be obtained by considering a greatly simpli­
fied model, in which the whole effect of nucleons outside of 
closed shells is represented by two interacting nucleons in p-states. 
Choosing the field to be of harmonic oscillator type, the closed 
shells may be treated collectively in terms of their resistance to 
deformation and their irrotational contribution to the moment of 
inertia. By varying the effective number of nucleons in closed 
shells, one obtains a secjuence of configurations with varying 
equilibrium deformations, for which the moment of inertia may 
be evaluated by means of (5). The strength of the interaction 
between the nucleons outside closed shells may be characterized 
by a parameter which measures the ratio of the interaction energy 
to the configuration spacing ha>. This interaction parameter may 
be taken as 

where U is the energy difference between the J = 0 and J — 2 
states of the two nucleons.

Corresponding to the different values of v, one obtains from 
this model a family of curves for 3 as a function of the equi­
librium deformation (cf. Fig. 1). These curves show the quali­
tative features discussed above, varying rapidly for small de­
formations and approaching 3rig f°r ß )) v- the limit of v ~ 1, 
in which the shell structure is destroyed by the interaction, one 
approaches the irrotational flow.

The curves in Fig. 1 only cover values of ß larger than about 
0.6 u. For configurations nearer to closed shells, the model con­
sidered gives no stable equilibrium deformation, and instead 
yields a collective spectrum corresponding to vibrations about 
a spherical equilibrium shape.

Such a general behaviour is expected to be characteristic of 
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nuclear configurations which couple to J = 0 or 1/2 in the absence 
of deformations, and thus in particular of the ground state con­
figurations of even-even nuclei. In fact, for such configurations, 
the nuclear potential energy of deformation is proportional to ß2 
for small deformations. The absence of a linear term, which is

Fig. 1. Moments of Inertia for the Two-Nucleon Model.
The figure shows the dependence of the moment of inertia $ on the nuclear 

deformation ß (cf. (15)), as estimated from the simplified two-nucleon model 
discussed in the text. The different curves correspond to different values of the 
residual interactions, as specified by the interaction parameter v (cf. (17)). For 
v = 0, the moment of inertia is equal to the value corresponding to rigid rotation, 
3rig (cf. (18)), independent of deformation. For v ~ 1, the moment approaches the 
value for irrotational flow, given by (11), and indicated by the dotted curve.

a consequence of the residual interactions, implies that, as one 
moves away from closed-shell regions, the deforming tendency 
of the particles in unfilled shells results at first merely in a de­
crease of the effective surface tension. Thus, nuclei possessing 
equilibrium deformations are expected to occur only in regions 
sufficiently far removed from closed shells, where the tendency 
towards deformation may overcome the effect of the interactions.

An estimate of the relative importance of the residual interac­
tions may be obtained from the observed nuclear coupling 
schemes. Thus, the very occurrence of even-even nuclei with 
stable equilibrium deformations, as revealed by the existence of 
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rotational spectra, indicates that, for these nuclei, the coupling 
scheme is approaching that of independent particles. This con­
clusion is further supported by the analysis of the ground state 
spins and intrinsic excitation spectra for the strongly deformed 
nuclei (Mottelson and Nilsson, 1955).

Even for the largest observed deformations, there remain, 
however, significant effects of the interactions as revealed espe­
cially by the systematic difference in the binding energy of even­
even and odd-A nuclei, amounting to about 1 MeV in the heavy 
nuclei (cf., e. g., Mayer and Jensen, 1955, p. 9). A similar effect 
is revealed in (he conspicuously different intrinsic excitation 
spectra exhibited by odd-A and even-even nuclei. While, in the 
former, the observed level spacing is a few hundred keV, corre­
sponding to the expected spacing between single-particle levels, 
the first intrinsic excitation in the even-even nuclei is rarely 
observed to lie below an MeV.*

* A striking example of this odd-even difference is provided by the comparison 
between the level spectra of W182 and W183, recently measured by AIurray, Boehm, 
Marmier, and DuMond (1955).

These differences can be interpreted in terms of a pairing 
effect similar to the one discussed previously (Mayer, 1950) for 
the coupling scheme in spherical nuclei. In deformed axially 
symmetric nuclei, where (he particles are filled pairwise in de­
generate orbits distinguished only by their sense of precession 
about the nuclear symmetry axis, the pairing effect can be simply 
accounted for in terms of the especially strong interaction 
between paired nucleons associated with their similar wave 
functions.

Such a pairing energy has the effect of increasing the energy 
denominators in (5), except in the contribution due to unpaired 
particles, and thus reducing the moment of inertia below the 
value for rigid rotation. In order to obtain an estimate of this 
effect, we have evaluated the sum (5), employing single-particle 
wave functions appropriate to a deformed potential with spin­
orbit coupling (Nilsson, 1955). When one includes in the energy 
denominators a pairing energy estimated to be on the average 
1.5 MeV for A ~ 150, the moment of inertia, for a deformation 
of ß = 0.3, is reduced by a factor of about two. From a comparison 
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with Fig. 1 the observed pairing energies are thus seen to imply 
an interaction parameter v of about 0.3*.

* This estimate of the residual interactions also appears compatible with 
the analysis of the low energy neutron scattering data in terms of the optical 
model (Feshbach, Porter, and Weisskopf, 1954) which yields a mean free 
path for nucleonic motion in the nuclear field a few times longer than the 
nuclear radius.

Dan.Mat.Fys.Medd. 30, no.l.

One may employ similar methods as used in the calculation 
of 3 to evaluate the expression (6) for the gyromagnetic ratio 
for the collective motion. Using the wave functions of Nilsson 
(1955), one obtains for even-even nuclei values for gR which 
fluctuate rather little about the average value Z/A and are relatively 
insensitive to the strength of the pairing interaction.

IV. Discussion of Empirical Data.

The systematically occurring rotational spectra in the region 
150 < A < 188 have been especially well studied. The moments 
of inertia for the even-even nuclei in this region, determined 
from the observed rotational level spacings, are plotted in Fig. 2 
as a function of the nuclear deformation. The moments are given 
in units of the value

&ig = |jfAfi§(l + 0.31 ß + 0.44 ß*.  . .) (18)

associated with a rigid rotation of an ellipsoid of constant density.
The nuclear deformation is estimated from the observed 

electric quadrupole moment ()0 of the nuclear shape which, 
for an ellipsoidal nucleus, is related to ß by 

(19)

where Z is the nuclear charge number.
The Q0-values are determined from the electric quadrupole 

transition probabilities between two members of a rotational 
band. The reduced transition probability for such a transition 
from a state A to a state If is given by

B (E2) = -^—e2 <A 2 Æ0 |/< 2 Z/Æ>2. (20)
1 0 %

2
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Table I.

Even-even nuclei Odd-A nuclei

Isotope
3 h2 

S
(keV)

Qo 
(io-24 
cm2)

Ref. Isotope Io
3 ti2

<\S 
(keV)

Qo 
(10 ~24 
cm2)

Ref.

«0Nd150 131 4.8 a, b, c
62Sm162 121 5.6 b, c, d

Sm154 82 7.5 b, c
Fu153631jU 5/2 72 7.7 b, c

64Gd434 123 6.6 b, c Gd155 (3/2) 62 b
Gd156 89 8.4 b, c Gd157 (3/2) 56 b
Gd168 79 9.3 b. c
Gd160 76 9.8 b. c

65Tb168 3/2 58 8.4 b, c
l)v16066u y 86 7.1 e Dy1«1 (5/2)|

62 b
Dy162 82 7.9 b, c Dy163 (5/2)/
Dy164 74 9.2 b, c

67Ho166 7/2 63 8.6 b, c
68Er164 90 7.3 f

J-T pl66

Er168 > 80 7.5 b, c, i Er187 7/2 52 b
Er170

«>Tm189 1/2 76 8.1 b, c
voYb47» 84 7.1 e, g

Yb172]
Yb174 78 9.2 b, c Yb173 5/2 68 8.8 b
Yb176

71LU175 7/2 76 8.0 b, c, h
72IIf176 89 7.1 b, h, m Ilf177 (7/2) 75 8.5 b, c, h

Ilf178 91 7.7 b, c,h, j Ilf179 (9/2) 67 b, c, h
Ilf180 93 7.2 b,c,d, h, j

Ta18173 i a 7/2 91 7.1 b, c, h, j, k
\V1827 1 100 6.9 c, d, h W183 1/2 72 6.5 c, h
w184 112 6.2 c, h
W188 124 6.1 c, h

78Re185 5/2 108 c, h, 1
Re187 5/2 115 c, h, 1

760s188 137 5.6 n
Os188 155 5.2 d

Moments of Inertia and Quadrupole Moments for Nuclei in the Region 
150 < A < 188.



Nr. 1 19

References and Text to Table I.
a) Simmons et al. (1955).
b) Heydenburg and Temmer (1955).
c) Huus et al. (1955).
d) Sunyar (1955).
e) McGowan (1952a).
f) Brown and Becker (1954).
g) Graham et al. (1952).

h) McClelland et al. (1955).
i) McGowan (1950).
j) Stelson and McGowan (1955).
k) Huus and Zupancic (1953).
l) F’agg and Walicki (1955).
m) McGowan (1952b).
n) McGowan (1951).

The table lists the available evidence on the shape and moment 
of inertia of nuclei in the region 150 < A < 188. Only those nuclei 
have been included which appear to exhibit collective excitations of 
rotational character. Thus, Sm150 and Gd152 have been omitted since 
their low-lying collective excitations are of vibrational type, as are also 
observed in the even-even nuclei just outside the considered region of A.

For the even-even nuclei, column two lists the energies of the first 
excited (2 -|-) rotational states, while the third column gives the 
Qo-values deduced from the electric quadrupole transitions between 
this (2 +) state and the (0 +) ground state, by means of (20). The data 
are obtained from Coulomb excitation experiments and lifetime 
measurements. The Q0-values represent a weighted average of the avail­
able determinations. For the even isotopes of Er and Yb, only a single 
transition has been observed in the Coulomb excitation of the natural 
element. This transition is tentatively assigned to all the abundant even 
isotopes.

For the odd-A nuclei, the determination of the moment of inertia 
and the quadrupole moment depends on the ground state spin Io. The 
table lists Z0-values determined from spectroscopic evidence (cf., e. g., 
Hollander, Perlman, and Seaborg (1953)) and, in parenthesis, the 
more tentative values derived from rotational level spacings and radio­
active decay schemes.

The quantum number K appearing in the vector addition coef­
ficient represents the component of angular momentum along 
the nuclear axis, and is a constant for a given rotational 
band.

Estimates of Qo can also be obtained from spectroscopic 
determinations of the ground state quadrupole moment Q of 
odd-A nuclei, using the relation 

(21)

where Io is the ground state spin. The Q0-values obtained in this 
manner are consistent with those derived from the transition

2*  
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probabilities by means of (20). (Cf. Bohr and Mottelson, 1955; 
Kamei, 1955).

The dependence of the observed moments of inertia on the 
nuclear deformation, illustrated in Fig. 2, is seen to correspond 
to the behaviour expected for a shell structure with some residual 
interaction (cf. § III). The full-drawn curve in Fig. 2 which follows

Fig. 2. Dependence of Nuclear Moments of Inertia on the Nuclear Deformation.
The empirical moments of inertia for even-even nuclei in the region 150 < 

A 188 are plotted as a function of the nuclear deformation. The moments of 
inertia, obtained from the data in Table I, are given in units of the rigid moment 
(18), while the deformation parameters ß are obtained from the Q0-values in 
Table I by means of (19). The nuclear radius has been taken to be Ro = 1.2 A113 
10~13 cm. The full-drawn curve represents a theoretical estimate, based on the 
two-nucleon model with an interaction parameter v = 1/3 (cf. Fig. 1). For com­
parison, the moment of inertia corresponding to irrotational flow is shown by the 

dotted curve.

the main trend of the experimental points is obtained from the 
simplified two-nucleon model and corresponds to an interaction 
parameter v = 0.33 (cf. (17) and Fig. 1). The scatter of the experi­
mental points about this curve is of the order of magnitude of 
the estimated experimental uncertainties. However, some fluc­
tuations about a smooth curve are to be expected, associated 
with specific differences of the individual nuclear configurations.

The strength of interaction (p ~ 0.33), revealed by the em­
pirical moments of inertia, is just of the magnitude estimated 
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from the observed nuclear pairing energies (cf. pp. 16—17 above). 
Such residual interactions, while of major significance for the 
collective flow, are still a factor of about three smaller than those 
which would destroy the basic nuclear shell structure.

The estimated value of v refers to the nuclei in the region 
150 < A < 188 ; the observed variation with A of the nuclear pairing 
energy suggests that v varies approximately as A—1/3.

As discussed in the previous section, one expects with the 
approach to closed-shell configurations a transition from rota­
tional to vibrational collective spectra, especially in the even­
even nuclei. For the two-nucleon model (cf. p. 14 above), the 
transition occurs when the deformation becomes comparable to 
0.6 v. Such transitions are in fact observed to occur in the neigh­
bourhood of Sm and Os, where the deformations are about 
ß = 0.2.

Since the transition from vibrational to rotational spectra 
takes place when the nuclear coupling scheme is approaching 
that of independent particle motion, the transition region may be 
characterized, approximately independently of n, by a moment 
of inertia equal to a certain fraction of $rig. A tentative estimate 
for this fraction may be obtained from the two-nucleon model, 
which yields $min = 0.23 $rig- This would imply that rotational 
spectra should occur in even-even nuclei only when the energy 
E2 of the first excited (2 +) state satisfies the relation

32 /i2
mar20- (22)

Excitation energies appreciably smaller than this limit have 
been observed only in the heavy element regions (A > 225) and 
(150<A<190) and in the relatively light elements around 
A = 24 and A = 8 (cf., e. g., Scharff-Goldhaber, 1953). The 
systematic occurrence of rotational spectra in the former regions 
is well established, and tentative evidence for a rotational spec­
trum in Mg24 is provided by the observed 4 + state with an energy 
about three times that of the 2+ state.*

* Also in Be8 there is tentative evidence for a 4 + state, whose energy is 
about 3.7 times that of the 2 + state (cf., e.g., Ajzenberg and Lauritsen, 1955); 
for this nucleus the large deformation indicated by the collective excitations may 
also be described as a tendency towards «-particle formation (cf. Wheeler, 1937).
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In other regions of elements the condition (22) is not satisfied, 
and the observed collective excitation spectra in even-even nuclei 
exhibit the expected vibrational character (Scharff-Goldhaber 
and Weneser, 1955).

Another feature of the nuclear moments of inertia, which 
may be understood in terms of the residual nucleonic interactions, 
is the observed difference between the moments of even-even 
and neighbouring odd-A nuclei. It is found that the latter are 
systematically larger than the former, by an amount varying 
from a few per cent up to as much as 40 per cent, while there 
appear to be no corresponding differences in the deformations 
(cf. Table I).*  This increase in the moments of inertia for the 
odd-A nuclei may represent the especially large contribution to 
(5) of the last odd particle which, in general, possesses low-lying 
states of excitation. Similar odd-even differences in the gyro- 
magnetic ratio qr are thus also to be expected.

* The similarity of the quadrupole deformations in the even-even and odd-A 
nuclei has also been noted by Heydenburg and Temmer (1955). Evidence for 
odd-even differences in the moments of inertia in the region A > 225 has been dis­
cussed by Bohr, Fröman, and Mottelson (1955).

In such cases where an appreciable fraction of the rotational 
angular momentum is associated with the motion of a single 
nucleon, one expects significant higher-order corrections to the 
adiabatic treatment, implying small deviations from the simple 
rotational energy spectrum (cf. p. 8 above).

Perturbations of this type are revealed in the very accurately 
determined energy spectrum of W183 (Murray et al., 1955), and 
have been accounted for in terms of the non-adiabatic coupling 
between the two lowest intrinsic configurations (Kerman, 1955). 
The detailed analysis of these perturbations permits a determina­
tion of the corresponding matrix element in (5), and it is found 
that the resulting contribution to $ is just of the magnitude of 
the difference between the moments of inertia for W183 and W182.

We wish to acknowledge the stimulus we have derived from 
contacts with experimental physicists working in the field of 
nuclear spectroscopy, many of whom have kindly communicated 
to us results of their investigations prior to publication. We have 
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also benefited from many enlightening discussions with Professor 
Niels Bohr, as well as with members of and visitors to the CERN 
Theoretical Division and the Institute for Theoretical Physics.

Institute for Theoretical Physics 
University of Copenhagen 

and
CERN (European Organization for Nuclear Research) 

Theoretical Study Division, Copenhagen.
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Introduction.

The following considerations are an attempt to discuss the 
ancient and time honoured metaphysical concepts of continuity, 
determinism, and reality with the help of a simple, almost trivial 

example. Theoretical physics has, by its own efforts, come to a 
point where it had to abandon a great deal of traditional philo­
sophical ideas and to replace them by new ones. But there are 
still leading physicists, amongst them Einstein (1), de Broglie 
(2), and Schrödinger (3), who have not accepted the new way 
of thinking. Therefore, a careful analysis of the philosophical 
situation in physics seems not to be superfluous. Einstein him­
self has formulated on several occasions his objections against 
the current interpretation of quantum mechanics not in obscure 
philosophical terms, but with the help of simple models. The 
same method will be followed here; in fact, the model discussed 
is actually due to Einstein (4). It makes it possible to illustrate 
abstract philosophical ideas by elementary geometrical con­
siderations; these provide of course no direct answer to the meta­
physical problems, but reduce them to clearly distinct alternatives 
and help thus to clarify the logical situation.

Part I. General Considerations.

1. Continuity.

I maintain that the mathematical concept of a point in a 
continuum has no direct physical significance. It has, for instance, 
no meaning to say the value of the coordinate x of a mass-point, 
or of the centre of mass of an extended body, has a value repre­
sented in a given unit by a real number (like x — |/ 2 inch, or 
x = 7t cm.).
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Modern physics has achieved its greatest successes by ap­
plying the methodological principle that concepts which refer to 
distinctions beyond possible experience have no physical meaning 
and ought to be eliminated. This principle was certainly operative 
in many instances since Newton’s lime. The most glaringly suc­
cessful cases are Einstein’s foundation of special relativity based 
on the rejection of the concept of aether as a substance absolutely 
at rest, and Heisenberg’s foundation of quantum mechanics based 
on the elimination of orbital radii and frequencies of electronic 
structures in atoms. I think that this principle should be applied 
also to the idea of physical continuity. Now consider, for instance, 
a statement like x = ncm.\ if ?in is the approximation of n by 
its first n decimals, then the differences 7tn — nm are, for suf­
ficiently large n and in, smaller than the accuracy of any possible 
measurement (even if it is conceded that this accuracy may be 
indefinitely improved in the course of time). Hence, statements 
of this kind should be eliminated.

That does not mean that I reject the mathematical concept 
of real number. It is indispensible for applying analysis. The 
situation demands a description of haziness of physical quantities 
with the help of real numbers.

The proper tool for this is the concept of probability. It can 
be assumed that sentences like the following have a meaning: 
The probability for the value of a physical quantity to be in a 
given interval (represented by two real numbers) has a certain 
value (again a real number). Or, with other words, for any 
quantity x there exists a probability density P(.r).

This attitude is generally accepted in quantum mechanics. 
But it has actually a more fundamental significance and is only indi­
rectly connected to the special features characteristic of quantum 
mechanics. It ought to be applied to classical mechanics as well.

2. Determinism.

Classical mechanics has its roots, since Newton’s time, in 
astronomy where the prediction of constellations was its main 
aim. Thus, the deterministic character of the mechanical laws 
is stressed in the traditional presentations. When mechanics is 
applied to micro-phenomena, it is, however, necessary to analyse 
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the meaning of the term determinism a little deeper. The mechan­
ical laws have the property that a precisely given initial state 
(configuration and velocities) determines at any time a sharp 
final state. There are two possibilities: Either a small change of 
the parameters in the initial state (small compared with the total 
range) produces only small changes of the final values for all 
times; then the orbit defined by the initial conditions is stable. 
Or this is not the case, the linal deviations increase in time beyond 
any limit; then the orbit is instable.

In astronomy, much work has been done to prove the stability 
of the planetary system. For our purpose, the results of these 
investigations are irrelevant. What matters is that there exist 
simple mechanical systems of a type familiar in atomic physics 
(kinetic theory of gases) for which all orbits are instable. These 
systems display therefore only what I should call weak determ­
inism; the future state can be predicted only if the initial state 
is defined absolutely sharply, in the sense of the mathematical 
concept of a point in a continuum; the slightest initial deviation 
produces an ever increasing vagueness of the final state. Thus, 
for systems of this kind, there is a close connection between the 
problems of continuity and determinism. If the point in a con­
tinuum has no physical meaning, it is impossible to maintain 
that systems of this type behave in a deterministically predictable 
way. Hence, for a wide class of mechanical systems, the traditional 
form of (classical) mechanics ought to be replaced by a statistical 
method which uses right from the beginning the notion of prob­
ability: There exists, for any coordinate x, velocity v, and any 
instant, a probability density P(x, v, t).

The simplest example of this type of systems is the model, 
suggested by Einstein with a very different intention, namely, to 
demonstrate the incompleteness of quantum mechanics (a ques­
tion to which I shall return presently). It is the model of a 
one-dimensional one-particle gas and consists of a mass-point 
moving in a straight line (coordinate x) up and down between 
two points (x = 0 and x = I) where it is elastically reflected1. 
In a diagramme, the motion is represented by a zig-zag line

1 If the assumption of an extensionless mass-point and perfect elasticity seems 
to be too unrealistic, one may take the centre of mass of a finite body running 
against high and steep potential walls at x = 0 and x = I.
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inside the strip O < x < I with alternating constant inclinations 
± v0, where v0 is the initial velocity. By taking successive images 
of this figure at the boundary lines of the strip, the diagramme 
Fig. 1 is obtained which is symmetric at vertical lines x = kl 
(A = 0, ± 1, ± 2, . . . .) and has the period 2 I. The zig-zag 
motion is therefore equivalent to two sets of parallel, synchronized 
straight line motion. It is obvious that x(t) is, for any t, determ­
ined by .r0 = ,r(0) and v0.

But, if x’o, v0 are changed by zlx0, dz?0, the diagramme of 
Fig. 2 is obtained, which illustrates that d.r increases propor­
tionally to t, zl x = ±tAv0. After the time tc = llAv0, the variation 
of x is larger than the whole range I of x. Hence, the system is
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perfectly instable and behaves, for t > tc, in an indeterministic 
manner.

Though this is perfectly trivial, I have never seen it pointed out1.

1 For an unbounded straight line motion, the question of stability has no 
meaning as there is no range (like I in the Einstein model) with which to com­
pare Zlx(f). The usual considerations on mechanical determinism miss this 
essential point of a final range.

3. Reality.

The question what we mean by the expression “physical 
reality’’ is closely connected with the previous considerations on 
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continuity and determinism. Einstein, in the paper quoted (4), 
describes “the programme that, until the introduction of quantum 
mechanics, was unquestionably accepted for the development of 
physical thinking” in the following way (translated from the 
original German): “Everything is to be reduced to conceptual 
objects situated in space-time and to strict relations which hold 
for these objects. In this description, nothing appears which 
refers to empirical knowledge about these objects. A spatial 
position (relative to the co-ordinate system used) is attributed 
to, say, the moon at any definite time, quite independently of 
the question whether observations of this position are made or 
not. This kind of description is meant if one speaks of the physical 
description of a “real external world” Einstein then 
discusses the question whether quantum mechanics leads to a 
description of the behaviour of macro-bodies, which corresponds 
to this notion of reality, and his answer is no. He considers the 
model of a one-dimensional one-particle gas (discussed above) 
and compares the classical motion with fairly sharp initial 
position and velocity with a special solution of the Schrödinger 
equation

w = Aeiat sin bx = ~ Ael(at + bx) — — Aei(at~bx) (1) 
2 z 2 z ’

(a and b being properly chosen constants); this represents a 
state where the momentum has either of two opposite equal 
values and the probability of position is, for sufficiently high 
momentum, constant apart from small periodic variations. He 
continues (translated): “For a macro-system we are sure that it 
is at any time in a ‘real state’ which is correctly described with 
good approximation by classical mechanics. The individual 
macro-system of the kind considered by us has therefore at any 
time an almost sharply defined coordinate (of its centre of mass)— 
at least if averaged over a small interval of time—and an almost 
sharply defined momentum (defined also in regard to sign). 
None of these results can be obtained from the ^-function. It 
contains only such statements which refer to a statistical ensemble 
of the kind considered”. And a few lines later he concludes: 
“Quantum mechanics describes ensembles of systems, not indi­
vidual systems. The description with the help of a ^-function is
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thus an incomplete description of a single system, not a descrip­
tion of its ‘real state’.”

This consideration, as it stands, is not conclusive, as the 
function ip chosen by Einstein is a very special solution of the 
wave equation, not adapted to the initial conditions and therefore 
not suited to illuminate the question whether quantum mechanics 
is able to describe the individual macro-body in a “realistic” 
manner—like classical mechanics—or can tackle only statistical 
ensembles. This question will be treated in some detail in the 
second part of this paper. Here another point must be discussed, 
which is implicitly contained in Einstein’s publication and ob­
viously foremost in his mind1.

1 I have to thank Professor W. Pauli for giving me, in some letters, an ex­
planation of Einstein’s ideas, obtained in oral discussions at Princeton, and his 
own comments.

In the previous sections, it has been shown that no physical 
meaning can be attributed to a sharp value of a co-ordinate 
and that therefore the description of a position in Einstein’s 
model should be given in a hazy but realistic manner through 
a probability density F(x); that, further, the laws of classical 
mechanics should be formulated not in terms of orbits, but of a 
time-dependent probability density P(a?, v, f). If this is done, 
classical mechanics is actually not dealing with a single system, 
but with a statistical ensemble, and Einstein’s criticism of quan­
tum mechanics, quoted above, taken literally, fails as it would 
apply in the same way to the classical theory. However, what 
Einstein really means, is evident from another sentence of his 
article which reads (translated): “The fact that, for the macro­
system considered, not every function ip satisfying the Schrödinger 
equation corresponds approximately to a description of a real 
phenomenon in the sense of classical mechanics, is particularly 
obvious by considering a ^-function which is formed by the super­
position of two functions of the type (1) whose frequencies 
(energies) are essentially different. For, to such a superposition, 
there is no corresponding ‘real case’ of classical mechanics (still, 
however, a statistical ensemble of such ‘real cases’ according to 
Born’s statistical interpretation).”

Classical mechanics, formulated statistically as it ought to be, 
is still a “description of reality” according to Einstein’s definition, 
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as one can think the single, sharp state as existing (though not 
observe it with the accuracy demanded by the mathematical 
concept of sharpness) and then obtain the physical vagueness by 
applying the ordinary laws of probability. For instance, one can 
think of a particle in a straight line being at x± and then the 
physical situation “we know that it is near oq” by a probability 
density p(x— xT) (where the function p(x) is different from 
zero only near x — 0). If we only know that the particle is either 
near aq or near x2, the probability density will be

P(x’) = a±p{x — aq) + u2 p(x — x2), ax + a2 = 1, (2) 

according to the ordinary rides of probability calculus.
In quantum mechanics the situation, however, is different. 

If tp(x— x±) is the Schrödinger function describing a particle 
being near aq, the probability density is p(x — aq) = I g>(x — aq)|2. 
If we know that the particle is either near aq or near x2, the 
situation is described by the Schrödinger function V’(æ) = 
c1ç?(æ — aq) + c2p(x — x2) and the resultant probability is

1 Einstein discusses in this connection the ideas of de Broglie, Bohm, 
Schrödinger a. o. who tried, in different ways, to interpret the formalism of 
quantum mechanics in terms of classical concepts, but he rejects these attempts 
as unsatisfactory.

P(æ) = I y(x) I2 = cpp(x — Xj) + a2 p(x — aq) + J(x), | 

°1 — I C1 |2> a2 = I C2 |2> (3)

where the additional term

J(æ) = c1c^<pÇx — x1)(pt\x — x2) + c^c2(p:\x — x1)(pÇx — x2) (4) 

represents the “interference of probabilities”. It has no classical 
analogue; even if it is practically negligible for t — 0, it may be­
come appreciable for certain x’-values at later instances.

The existence of this interference phenomenon excludes the 
possibility to think of the particle as having a definite position 
(and velocity) at any instant and to connect these positions in 
imagination to an orbit, and this is the reason why Einstein 
declares quantum mechanics to be incomplete1. He insists that, 
at least for macro-bodies, a theory cannot be regarded as satis­
factory unless it conforms with his idea of reality.
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This is a philosophical creed which can be neither proved 
nor disproved by physical arguments. But what can be done is 
this : one can formulate another concept of physical reality which 
takes account of the actual existence of the interference pheno­
menon in the atomistic region and goes over into the traditional 
one (that accepted by Einstein) for macro-bodies. This I have 
done in a systematic, but rather abstract way, at another place (5). 
I shall not repeat these considerations here, but illustrate them 
only with the help of the model used above, a particle oscillating 
on a line between two elastically reflecting boundaries.

The main point is that the physicist has not to do with what 
can be thought of (or imagined), but what can be observed. From 
this standpoint a state of a system at a time t, when no observ­
ation is made, is not an object of consideration. But as soon as 
an observation is made, the situation found has to be regarded 
as the final state of the phenomenon defined by a previously 
observed initial state and, if future observations are envisaged, 
also as the initial state of the further development. This “reduc­
tion of probability’’ is not characteristic of quantum mechan­
ics, but has also to be applied to classical mechanics if it 
is formulated in terms of probability: Any observation for 
checking a predicted probability density “destroys” it and pro­
duces a new one which has to serve as initial state for further 
predictions.

But from this standpoint the interference phenomenon looses 
much of its paradoxial character. For the one-dimensional model, 
an actual observation determines not the complex amplitudes 
ci = l/aie1“1, c2 = \/a2eia2, but only the probabilities (relative 
frequencies) ar = | cx |2, a2 — | c2|2; the phases ax, a2 remain 
entirely unknown and undetermined, and the interference term 
vanishes if averaged over the phase difference ax — a2. For more 
complicated systems (like the optical interferometers), the dis­
tribution in the final state may of course show interference fringes, 
which classical theory cannot explain; but this appears only 
paradoxial from the traditional (Einstein’s) standpoint where a 
non-observed intermediate state is declared to be just as real as 
an actually observed final state.

The situation can be illustrated by a detailed discussion of 
our model. This will be done in the second part of this paper.
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Part II. Mathematical Considerations.

The model which will now be investigated in more detail 
seems to be the simplest mechanical system with a finite range 
of the variables (co-ordinate, velocity) for which the exact solution 
can be found. The Hamiltonian has essentially only a kinetic 
part; the potential energy due to reflection at the boundaries can 
be replaced by certain periodicity conditions, and the equations 
of motion then can be solved, in the classical and quantum treat­
ment as well, with the help of Kelvin’s method of images. The 
resulting formulae are simple and well suited for a discussion 
of several important problems, as the transition from the initial 
individualistic to the final statistical description, the characteristic 
distinctions of classical and quantum treatment, the reduction of 
probability through observation, and the interference of proba­
bilities.

1. Classical treatment of the one-particle 
one-dimensional gas.

The orbit of a particle in Einstein’s model, starting at / = 0 
from the point x — xQ with the velocity v = v0, is analytically
given by

1 X = ‘21k — æo— Vot, 12k-l<t<t2k\
| æ — — 2lk x0 -p uot, < t < ^2/c+i ’/ (1-1)

where
= M-.i'o, k = ± ± ...................

(1.2)

It is convenient (as already indicated in Fig. 1) to replace the 
one-particle system by a periodic system, consisting of an infinite 
number of synchronized particles, by dropping the conditions 
t > 0, Q < x < I (silently assumed in (1.1)). This procedure will 
be denoted by the short name “periodic continuation”. According 
to the programme explained in Part I, the “deterministic” de­
scription (1.1), (1.2) shall be replaced by a statistical one, with 
the help of a probability density, P(x, v, f). We have to do with 
a case of statistical mechanics where the system is not in statistical
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equilibrium, but develops in time from a given initial distribution 
P(x, v, 0). The only condition for P(x, v, t) is that which ex­
presses the conservation of probability; it follows from Lion-
ville’s theorem,

d P
^+[P,H]=0, (1.3)

where H(x,p) is the Hamiltonian as function of coordinate and 
momentum and

[P,H^9P0H_dpaH
ox op op ox (1-4)

the Poisson bracket.
H consists of the kinetic energy p2/2m, and the potential 

energy representing the reflective power of the walls. As this force 
is assumed to be infinitely strong, it can be replaced by certain 
periodicity conditions which will be derived presently. With 
H = p2l2m and p = mu, (1.4) reduces to

(1.5)

The periodicity conditions follow from the consideration that the 
solution must have the same value at a given point x (in 0 < x < V) 
after each reflection; for instance, after one reflection at x = 0, 
one has

P(x, v, f) = P (x, — v, t — (1.6a)

and, after two reflections at x = 0 and x = I,

P(x, v, t) = P \x, v, t + (1.6 b)

The general solution of (1.5) is

P(x, v, t) = f(x— vt, v), (1-7)

where f(x, v) is an arbitrary function of two arguments, defined 
for all values — °° < x, v < °o, which represents the initial state

P{x, v, 0) = f(x, v). (1-8)
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The condition (1.6 b) leads to

f(x — vt, v) = f(x — vt —-2 I, v)

and (1.6 a) to
f(x — vt, v) = /(— x + vt, — v).

The first of these conditions says that f(x, v) is periodic in x 
with the period 21,

f(x, v) = f(x + 21, p); (1.9a)

the second, that it is symmetric for the inversion

f(x, v) = f(—x, — v). (1.9b)

These two periodicity conditions define the periodic continuation 
of P(x, v, t).

The case of a particle having for t = 0 almost a fixed position x0 
and fixed velocity v0 is of particular interest. In order to describe 
it in a simple way we introduce a function <p(x, v) restricted to 
a narrow domain around x — 0, v = 0; assuming <p to be norm­
alized, the average of a function q(x, v) is defined by

/ OC I SO
q — \ \q(x,v)(p(x,v)dxdv, \ yp(x, v) dxdv = 1, (1-10)

‘■0 *- —oc * o —x

and we postulate

x = 0, p = 0, x2 = Oq, p2 = Tq, (1.11)

where cr0 « I, To « v0.

Then, the function

oc

f(x,v) =^{cp(2kl + x — .r0, v — v0) + <p(2 kl — x — x0,— v — p0)) (1.12)
k = — <x>

has all properties requested: it satisfies (1.9a) and (1.9b) and it 
has, in the interval 0 < x < /, only one sharp maximum corre-
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sponding to the, first term for k = 0 (as the maximum of the 
second term, at — a?0 + 2 kl, is outside the interval for all k = 0, 
il, i 2, . . . .).

Hence, the probability density is, according to (1.7),

P(æ, v, Z)
0©

= + x —æ0 —uf, v — p0) + 9?(2Å7 — x — a:0 + vt, v — Vq)};
k = — oo

(M3)

it is properly normalized, for

,«x !» Z»00 [/»(2k + 1)Z —x0—(t>0 + rf)t >(2k — l)l — x0 — (v0 4- rf}t
\ \P(æ, p, f) dxdp \ <fy\\<P(£,'n) dg — \<p(£,n)d!;
Jç) J—oo k = — oo •’—oo L^2 kl — xjf— (v0 + rj)t 12 kl — x0 — (v0 + rj) t

oo X

= \ dr/\ d £(p(£, rj) = 1,
*-—oo —-Q

(1.13a)

in virtue of (1.10).
If cp(x, p) is chosen as a Dirac ô-function, i. e. cr0 = 0, r0 = 0, 

this function (1.13) reduces to zero except for the points which 
satisfy the equations (1.1), (1-2). But this limiting case does not 
correspond to a real physical situation. We have to consider (To 
and r0 as finite quantities.

By integrating (1.13) over v one obtains the spatial distri­
bution

'•00
P(x, /) = \P(x, v, f) dv

J--00

00 (.°°

m(2 A7 + x — .t0 — (p0+ ??)/, rf)+(p(2kl— x— x0—(po + ^M)}^, 
k = — 00 J—-co

(1.14)

and, by integrating (1.13) over x from 0 to /, the velocity distri­
bution

i«00 <*  [«(2k + l)Z— x„ — vt p(2/c—l)Zx0 + vt I

P(p, 0 = \P(x, p, f) = v — Vo^dZ — yyt^ — v — v^dq. (1.15)
*— oo k = — oo 1 »2 kl — x0 — vt v2kl — x0 + vt )

These two formulae are the analytical expression of the fact that 
at each reflection the velocity changes its sign. The distribution 
of the absolute value of the velocity is obviously nothing but the 
probability that the velocity is either p or —p, hence

0 = P(y, I) + P(_—v, ()• (1-16)
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This quantity is easily found from (1.15) to be independent of 
time, as should be expected. For the two parts in (1.16) con­
tribute terms in the sum (1.15) which can be combined to inte­
grals from — oo to oo :

OC
P(|y|, o = P(| v\) = ( {99(1, P —Z7O) + ?(£, —v — u0)}d£. (1.17) 

J--X

As an example for which all calculations can be performed in 
detail, one can consider 99 (x, v) as a Gauss function in both 
arguments. If we put

1 X2 u2
(p(x, p) = - ---------e 2ct°2 2t°’, (1-18)

2 71 ÖQ To

the equations (1.11) are satisfied. (1.13) becomes

, ( (t> — i?0)a oc 1 (2kZ + x—x0 —vZ)1

P (X, v, t) = —------ < e ye~2
2 n o-0 t0 I k oo

and (1.14)

(1.19)
(0 + i>0)2 00 1 (2kl— x — x0 — vt)2}

+ e 2^- e~ 2^
k = —00 J

where
^(0 = |/tf? + Toî2. (1.21)

If now the averages of x, x2, and (Ax)2 = (x— x)2 are formed 
with the distribution (1.20) one finds for x exactly the expres­
sions (1.1), (1.2) and further

(Ax)2 = cr(t)2. (1-22)

Hence, the width of the distribution increases with time. It becomes 
equal to the whole range I of x at a critical instant

(1.23)
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If <t0« I, this is approximately tc ~ l/r0, the value used in Part I. 
For small t0, the epoch tc is very large but always finite.

It can now be shown that, for t oo, P(x, t) becomes con­
stant, independent of x and t. If t is large, one has cr(/) —rof, 
and (1.20) reduces to

P(x, f)

if one puts---------v0 — rj, then to an increment JÀ' = 1 there

corresponds Ar] = 2l/t which, for t oo, tends to zero. Hence, 
the sum goes over into an integral

(1.24)

This is the properly normalized “geometrical” probability for 
finding the particle anywhere in the interval of length /.

However, the distribution for £ -> oc is not that of an ideal 
gas, as the velocity distribution is different. One obtains from 
(1.17) and (1.18)

1 I _ (p~po8) _ (" + ^o)2
p(H)~^ i/ole 2T°2 +e 2T°2 

To f 2 71 I
(1-25)

that means two Gauss distributions with the mean velocities dz f’o> 
but not a Maxwell distribution.

The result of this consideration is therefore that a motion 
which starts as that of a practically individualistic particle, in 
the course of time goes over into a state where the position 
becomes completely indetermined while the magnitude of the 
velocity remains unchanged, its direction indetermined.

The question how the model has to be modified so that the 
final state is an ideal gas will not be investigated here in detail. 
It is obvious that a mechanism for the exchange of velocities 
between several mobile objects is needed. I presume that it suf­
fices to replace one of the elastic boundaries by a model of a 
thermal reservoir (a heavy body with a Maxwell energy distri­
bution) which exchanges energy and momentum with the particle 
at each collision.

Dan. Mat.Fys.Medd. 30, no.2. 2
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2. Quantum mechanics of the one-dimensional 
one-particle gas.

To treat the same problem with quantum mechanics one has
to solve the time-dependent Schrödinger equation for the wave
function y>(x, f),

h2 d2ip . dtp 
2m dx2^ 11 dt

1 De Broglie has actually treated the three-dimensional case.

= 0 (2.1)

with the boundary conditions

y>(0, /) = 0, tp(l, Q = 0. (2.2)

There are two standard methods, that of d’Alembert and that of 
Fourier. The d’Alembertian solution is, in the present case, pre­
ferable as it leads to results easily comparable with those of the 
classical treatment. The transformation in a Fourier series can 
then be easily obtained.

De Broglie has given, in one of his books (6), a solution1 
of (2.1) without boundaries, which corresponds to arbitrary 
initial values /’(.r); namely

^(•r, 0 (2-3)

This can be readily confirmed by direct calculation (substituting 
into (2.1) and demonstrating that tp(x, Q -> f(x) for t -> 0). Then, 
following Darwin, he choses for /’(.r) the function 

which represents an harmonic wave with momentum mu0, 
modulated by a Gauss function with a crest al x0 and width u0 |/2. 
The probability for location | f(x) |2 is normalized,

(/'|(æ)|2 t/.r = 1, (2.5)
J--- oc
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and the expectation values of coordinate, momentum, and their 
mean square deviations are

(2.6a)

h2
(2.6b)

If we introduce the uncertainty of the velocity

r„ = |/(J O2 = l '(^/>)2 = (2.7)

we have the Heisenberg uncertainty relation

]/(d x)2 • (d p)2 = m o-o^o = 2 ' (2-8)

If (2.4) is substituted in (2.3) and the integration performed, 
one obtains after some reduction 

where

(2.10)

(2-9)

y(x, t) is the normalized probability amplitude for a group of 
waves with a crest initially at .r0 moving with the velocity u0 
(from left to right). Then, y(—x, f) corresponds to a group of 
waves with a crest initially at — x0 and moving with the velocity

2*  
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— v0 (from right to left). For inspection of (2.9) shows that a 
change of sign of x is equivalent to a change of signs of x0 and z?0.

Applying the image method, we construct the function

00

^(x,/) = 2? {y(2H + x, /)—y(2Jtf —x,0}; (2.11)
k = —oo

it is obviously periodic in x with period 21 and vanishes for 
x = 0 and x = I. If t -> 0, one has approximately cr(/) -> cr0, 
s(Z) 1, and

V/(x,0) =
(exp 2kl + x — x0

2 cr0
inw0
~7i (2Â7 + x — x0)2

— exp
(2.12)

This can be written

¥'O,0) = 2’ {f(2kl + x)-f(2kl-x)}, (2.13)
k = — oc

where /(x) is the function defined by (2.4). Hence, the initial 
state consists in two groups of plane waves travelling to the right 
and left, both modulated by Gauss functions of width <r0, and 
group crests at x0 + 2kl and — x0 + 2kl (Ä = 0, ± 1, ± 2, • • •), 
respectively. Inside the interval 0 < x < /, these waves are 
equivalent to one wave with a crest initially at x0, which is 
repeatedly reflected at the boundaries x = 0 and x = /. Hence 
the solution describes, for small a0, a repeatedly reflected single 
particle with slightly uncertain initial position.

The probability of location is

P(x, I) = W*  =Z Ê {v(.2k'l + x,t)
k = — oo k1 = — oo

— y»(2kl— x, t)}[ip*(2  kl + x,t)—ip*(2kl — x, /)}.
(2.14)

Now, each term ip (2 kl + æ, 0 corresponds, in Fig. 1, to a line 
ascending from left to right (+ line), each term ip (2kl— x, t) to 
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a line ascending from right to left (— line). Accordingly, the four 
products obtained by multiplying out the bracket in (2.14) can be 
classified into three types and the total probability split into 
three parts:

P(æ, Z) = Pc(x, Z) + Pf(æ, 0 + Pr(x, Z). (2.15)

For k = k', the terms y(2ÀZ + x, Z) ip*(2kl  + x, f) and y(2kl 
— x, t) y)*(2kl  — x, Z) represent the superposition of the Gauss 
function of a 
contribute to

/V-r.O = ttyAsZ A' ■
(Z) V 2 ji k _ —Q0

which is identical with the probability (1.20) derived from the 
classical theory.

The remaining terms for k — k', namely —y(2kl + x, Z) 
y*(2kl  — x, Z) and — y(2kl — x, Z) y>*(2ÄZ  + x, t), correspond 
each to the intersection point of a (+ line) with an equally 
numbered (—line); all these are (cf. Fig. 1) on the boundary 
x — 0. It is obvious that the other boundary x = Z, where 
k' = k + 1, contributes terms of the same type and similar 
magnitude. Collecting all these terms, we obtain

,(2.16)

(+ line) with itself and a (—line) with itself; they 
(2.15)

P,(x, Z)
__ ~2_ y L- læ1 + (2M-xo-vooq 
u (Z) V2jtk^-Lx\

cos
æ [ gp 

a0T0Z [o-(Z)2 (2 kl — x0 — vof) — 2kl + ,r0

-97^[d-*) 2 + (2M-æo-VoOs] Z —X
e zoit) cos------

gpTpZ -77^ (2Å7 — æ0 — PO Z) — 2kl + x() (7(Z)

These terms represent interference effects due to the super­
position of an incident with a reflected wave near one of the 
boundaries. The fringes, described by the cos-terms, are restricted, 
by the Gauss functions, to a neighbourhood of the boundary of 
width u(Z); if o^« I, these regions of interference remain narrow 
for a long time (Z « Zc). The remaining terms, all of the type 

(2.17)
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k =1= k', correspond either to the superposition of two different 
(+ lines) or two different (—lines) or to intersection points of 
a (+ line) and a (—line); outside the region 0<rr< /. Ifa(0«/, 
their contribution to the probability, Pr(æ, f), is small and can 
be neglected for t « tc.

The essential differences between the classical and quantum 
treatment are now clearly seen to be of two different kinds; there 
arc, firstly, the interference effects near the boundaries, repre­
sented by Pit and, secondly, the Heisenberg uncertainty relation 
which connects o0 and r0(= /i/2 mcr0) and thus prohibits simul­
taneously sharp initial position and velocity. Both effects are 
appreciable only for atomistic particles and negligible for macro­
bodies (in large).

It is now clear that whenever the interference terms Pf can 

be neglected, namelv when cr0 « I and r0 = —— « n0, or, when
2 m gt0

2 mu0 « <r0«/,

then P(x, t) approaches, for t oo, the constant value 1// as in 
(1-24).

We have now to investigate the relation of the solution for 
an individual particle given above and the solution based on 
eigenstates (which Einstein uses for his critical considerations). 
For this purpose we expand the function ^(.r, t) in a Fourier 
series; as it is antisymmetric we can write

with

^(.r,/) = y An(t) sin^x,
n = I ‘

(2.18)

(2.19)

By substituting (2.18) in the differential equation (2.1), one sees 
that An (f) satisfies the equation

hi dAn(t)
dt (2.20)
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and as E — hid/dt is the energy operator, one has

where
-4„(0 =

lnhn\2 1
E" = \~T) 2m

(2.21)

(2.22)

are the eigenvalues of the energy. Therefore it suffices to cal­
culate the constants

Substituting (2.13) one has

9

/

hence
n 7i x (2-24)dx,2 i,ac

ft» sin
i t)—00

which shows that the Fourier coefficient of ^(x, 0) in the interval 
0 < x < / is the Fourier transform of /(x) in — oc < x < oc 
taken at the points nTi/l of the reciprocal space.

It follows now readily that W(x, f) is normalized for all t; 
one has

Introducing for /(x) in (2.24) the expression (2.4), one obtains
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The absolute value of the momentum in the state n is, according 
to (2.22),

Pn j/ 2 mEn
7th n
~~r

hence, with ctoto = h/2 m, (2.26) can also be written

Assume u0 > 0; since in (2.18) n = 1, 2, . . . . , pn is positive.
Hence only the exponent of the second term can approach zero, 
namely for

Pn n?p0, nmax (2.29)

For this n one has

~ Î j (<?0 V 2 7t)
inivoxo/h

(2.30)

and the expansion (2.18) reduces, for small r0, to the leading
term :

^(.r, t) ~ z'Jy ((jol^^y/’e
inwoxo/h mvoxsin ——

/i
(2.31)

This is the solution of the Schrödinger equation used by Ein­
stein (cf. Part I, (1)) to demonstrate the incompleteness of quan­
tum mechanics. However, as the preceding considerations show, 
it is only an approximation; the correct solution is the wave 
packet with the coefficients (2.26) or (2.28), and this is com­
pletely equivalent to the d’Alembertian solution (2.11) which 
exhibits the fact that, for a restricted time (/ < Zc), the motion 
is properly approximated by the classical, orbital or individualistic 
description. The quantum formula (2.31) and the classical for­
mula (1.1) are therefore bridged by a continuous transition, and 



Nr. 2 25

there is no paradoxial situation for macro-bodies which Ein­
stein believes to exist.

Einstein’s objections against quantum mechanics based on 
the interference of probabilities can also be illuminated by this 
model. The first point is that one must not add phase factors of 
the form eiak to the terms of the sum (2.11), because then the 
boundary (periodicity) conditions would be violated. All the dif­
ferent terms in the sum are in phase; only a common phase 
factor eia can be added to the whole sum. But this cancels in 
the probability expression (2.14). Hence, the interference term 
given in (2.17) is genuine and cannot be destroyed by averaging 
over phases; these interferences between incident and reflected 
wave are of the same type as those in certain interferometric 
optical experiments (standing waves).

But one can now consider the case, discussed at the the end 
of Part I, where the initial distribution has two sharp maxima, 
one at xlf the other at x2; i. e. one knows only that the particle 
is either near xt or near x2. The solution xP(x, /) is then a linear 
combination of the two single functions with complex factors; 
but the relative phase of these is indetermined, one has to average 
over it and thus no interference phenomenon results from this 
situation. This must be so; for simple ignorance where a particle 
is at t = 0 cannot produce a physical interference phenomenon. 
Observable interference can be obtained only by feeding in par­
ticles from one source at two places by a physical instrument 
which divides one de Broglie wave into two “coherent” beams in 
a similar way as half-silvered plates and similar devices in optics. 
As soon as an attempt is made to decide on which of the two 
feeding branches the particle appears, there is a new initial state 
and no interference is observable.

3. Summary.

It is misleading to compare quantum mechanics with de­
terministically formulated classical mechanics; instead, one 
should first reformulate the classical theory, even for a single 
particle, in an indeterministic, statistical manner. Then some of 
the distinctions between the two theories disappear, others emerge 
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with great clarity. Amongst the first is the feature of quantum 
mechanics, that each measurement interrupts the automatic flow 
of events and introduces new initial conditions (so-called “reduc­
tion of probability’’); this is true just as well for a statistically 
formulated classical theory. The essential quantum effects are of 
two kinds: the reciprocal relation between the maximum of 
sharpness for coordinate and velocity in the initial and con­
sequently in any later state (uncertainty relations), and the inter­
ference of probabilities whenever two (coherent) branches of the 
probability function overlap. For macro-bodies both these effects 
can be made small in the beginning and then remain small for 
a long time; during this period the individualistic description of 
traditional classical mechanics is a good approximation. But 
there is always a critical moment tc where this ceases to be true 
and the quasi-individual is transforming itself into a genuine 
statistical ensemble.
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An account is given of 17 A-meson events found in half a stack of stripped 
emulsions exposed during the Sardinia expedition of 1953. Evidence is presented 
for the mode of decay Kn^- p 4- v, where the /z-meson is emitted with pßc = 
(224 ± 7) MeV., and the best mass of the À^-meson is (990 ± 16) me. An 
example of %-decay is also reported and discussed.

I. Introduction.

In the course of a special scan of 106 cm3, of emulsion for 
stopped Æ-mesons, 17 examples have been found in which a 

stopped /{-particle emits a fast singly charged secondary, together 
with one or more neutral particles. In addition, one example of 
the capture of a negative Æ-meson, two examples of r-decay, 
one probable and one certain excited fragment, 1054 examples 
of n-/A decay, and 1540 u-stars were found in the same volume 
of emulsion. The emulsions searched formed half of a stack of 
40 stripped emulsions, each 150 X 100 X 0.6 mm3., exposed by 
the Sardinia expedition in the summer of 1953. (S 17; exposed 
on flight 20). The plates reached a maximum altitude of 85,000 
feet, and remained above 62,500 feet for seven hours, at which 
latter altitude the cut-off operated. Fuff details of the flight data, 
etc., have been published by Davies and Franzinetti (1954). 
The plates were later developed in Bristol.

It is difficult to estimate the efficiency of detection of the 
stopping /{-particles which decay with the emission of only a 
fast charged particle at or near minimum ionization. The grain 
density in our emulsions is considerably lower than normal 
(plateau 9 grains per 50 u) and the grains themselves are small. 
A guide to the efficiency of observation of the decay tracks from 
the stopped particles may be had from the ratio of the numbers 
of p-meson events with and without observed decay electrons. 

1*  
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The observed ratio is 1.15, compared with an expected value 
1. It must be noted, however, that the comparison between 

the ^-mesons and the A-mesons is by no means exact; it is easier 
to distinguish ^-mesons from stopping protons, so that the search 
for a minimum secondary will be made more carefully.

The method of scanning adopted probably leads to some bias 
against negative A-events, for, when a negative A-meson is stopped 
and captured shortly after entering a particular emulsion sheet, 
the event is not easily distinguished from an ordinary small star. 
On the other hand, a stopping track with which was associated a 
lightly ionizing secondary would be traced back into the next 
emulsion if there were any doubt at all about its nature. Tracing 
back has been made very simple and quick by the use of frames 
in which the individual plates are mounted, so that the scanners 
are always able to follow doubtful examples back quickly.

Table I includes all the data which have been obtained on 
the examples of A-mesons. Preliminary data (Bøggild et al., 
1954) on some of the events have already been included in the 
table published by Dilworth et al. (1954), but there are changes 
in the present table due to more detailed measurements which 
have been made more recently.

II. Mass Measurements on the Primary Particle Tracks.

(a) Constant Sagitta Method.

Measurements by the constant sagitta scattering method have 
been carried out on all the suspected A-particles to rule out the 
possibility that any of them are examples of hyperons decaying 
at rest. The cell scheme used was that published by Fay et al., 
(1954; table 4) which extends from 40 to 10,300 /z and which 
was designed for a mean sagitta, D, of 0.500 g for %-mesons. 
Taking into account the variation of the scattering constant and 
pßc along the track, a particle of mass M — 963 ine would be 
expected to yield a value of 7) = 0.288 p, while one of mass 
M = 2330 ine would give D = 0.193 //,. When the full set of cells 
is not used, D must be corrected by a small factor which is a 
function of the mass. The scattering was measured using cells,
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935 ±40

273 500 1000 1500 1636 2230
mp

Fig. 1. A weighted distribution of the masses of the 17 K-mesons and one r-meson 
measured by the constant sagitta method. Each track is represented by a rectangle 
whose width is the standard deviation, and whose area corresponds to the statistical 

weight.

each of which was half the length given in the table. A 4 X D 
cut-off was used and the noise was eliminated between these 
cells and those of full size, on the assumption that it is independ­
ent of cell-size. For steep tracks, the zero point of the cell set 
was frequently adjusted, so that, on the average, the assumed 
range was equal to the true range. The value of 1), measured 
on a track of angle of dip ø in the unshrunk emulsion, was 
corrected by a factor (cos 0)3/2. This factor was 0.8—0.9 for 
events Æ4, Æ13, and ÄT7, and between 0.6 and 0.8 for events 
Æ8, A’9, and ÄT8. For all the other events (cos Ø)3/2 > 0.9. The 
value of I) from six tracks which were shorter than the full set 
of cells was corrected on the assumption that the mass was 
963 me. This correction never exceeded 1 °/0-

The masses quoted in Table I were calculated, using the 
relation

3/ = (963 me) (0.288 ^/D)2-32 
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while the errors were derived from the number of cells, taking 
into account the effect of noise. The probability that any of these 
particles has a mass outside the interval 273 ine to 2340 me is less 
than 2°/0. Taking the measurements of all the particles together, 
the mean value of 1) = (0.291 ± 0.005) y, corresponding to a 
mean mass value of 3/ = (935 ± 40) The weighted distribu­
tion of the individual mass values is shown in Fig. 1.

(b) Mean Gap-Length vs. Range Method.

In view of the large statistical error inherent in the measure­
ment of mass by the constant sagitta method, we have, in addi­
tion, measured, by the mean gap-length vs. range method, the 
masses of six primary particles whose tracks were Hat in the 
emulsion. As is well known (O’Geallaigh, 1954; Della Corte 
et al., 1953, 1954), the mean gap-length is a particularly good 
measure of ionization, since it is very little dependent on small 
fluctuations of development in the plates. In our experiment, no 
corrections for variation of this quantity with depth in the emul­
sion have been found to be necessary, provided that track within 
30 p of either surface of the shrunk emulsion is not measured. 
As the greatest fluctuations in the mean gap-length differed by 
only a few per cent between different parts of the same emulsion, 
and between different emulsions of this batch, it has only been 
necessary to make a detailed calibration curve for one of the 
emulsions of the batch. The curve was then fitted to points cor­
responding to specific proton ranges obtained from the other 
emulsion sheets. Of the plates which have been examined in 
detail, three yield mean gap-lengths as a function of range which 
arc identical to within about 1 °/0 with those obtained from the 
calibration plate; the mean gap-lengths from three other plates are 
very close to that of the calibration plate for black tracks, but 
deviate from it when the mean gap-length becomes larger. The 
deviations are about 4 °/0 when the ionization is that corresponding 
to a proton of 5 cm. residual range. As the deviations are small, 
it is sufficient to assume that the percentage correction of the 
mean gap-length is proportional to the mean gap-length.

In view of the arguments put forward by Della Corte and 
his coworkers (1954), such deviations might, at first sight, seem 
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surprising, but it must be remembered that their arguments only 
apply to “fully developed” emulsions. Though it is difficult to 
define in a practical way what exactly is meant by “fully devel­
oped”, the present stack of emulsions is, by any standards, rather 
lightly developed. When the mean gap-length in a plate was found 
to deviate from that in the calibration plate, it was always larger, 
indicating lighter development. In such plates, the fluctuations of 
the mean gap-length along a track were found to be very much 
larger than for those plates in which it did not deviate, and this 
effect was found to be due to “islands” of low development, in 
which the mean gap-length was sometimes as much as 10°/0 
above that of the calibration plate. No evidence was found for 
“islands” in those plates which did not deviate appreciably from 
the primary calibration. In order to correct for the effects of the 
“islands”, special calibration tracks close to those of the Ty­
mesons were used in those plates which deviated. Some con­
fidence can be felt that all the “islands” which could have led 
to appreciable errors in the mass determination have been found, 
for their effects would be expected to show up as large deviations 
in the apparent mass between different plates. In only one of the 
six measured examples, A6, did the whole of the track lie within 
the same emulsion sheet. Only two sections of A-track, both on 
A7, were found to pass through the “islands”.

A simple cosine correction was applied to the mean gap­
length whenever the dip of the track exceeded one in thirty-five 
in the shrunk emulsion, but as measurements by this method 
w ere only made on tracks which were relatively Hat, corrections 
were only used on a few- short sections, and they never exceeded 
3°/o-

In order to test the method for any possible systematic error 
when applied to particles of A-meson mass, measurements were 
made, using exactly the same experimental techniques, on the 
track of a r-meson. The value obtained for its mass was (979 ± 
43) me, in excellent agreement w ith the accepted value (e. g., 
see Amaldi et al., 1954). It should be noted that the error quoted 
does not take any account of possible errors arising from the 
calibration.

The errors were found by splitting all the tracks into sections, 
1.74 mm long, from each of which a value of the mass was found. 
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The errors could then be calculated from the internal consistency 
of each track. From the calibration tracks, the standard deviation 
of the individual sections from their means were 8.2 °/0, 8.8 °/0, 
and 8.9 °/0 on //-mesons, 7r-mesons, and protons, respectively. 
The standard deviations found from the three longest A-meson 
tracks were 9.4 °/0, 5.6°/0, and 7.5°/0 for individual 1.74 mm 
lengths. Taking all the measured sections of A-meson track 
together, one finds that the standard deviation is 8.6 °/0, in good 
agreement with the above figures. This is consistent with the 
assumption that all the A-particles have the same mass.

29 individual sections of A-track were measured. If the meas­
urements were completely independent, the final error on the 
mean would be (8.6/J/29) °/0 = 1.6°/0. In point of fact, the error 
calculated from the final masses was only 0.6°/0. Though the sta­
tistical weight of this figure is small, it appears that the true 
standard deviation taken from the final mass values cannot be 
larger than that obtained from the individual sections. This con­
firms that all the masses are consistent with an unique value, and 
at the same time shows that any effects due to energy straggling 
are already included in the error which is deduced from the 
individual sections. A narrow distribution of the masses de­
termined from long tracks might be a consequence of correlation 
between energy-loss fluctuations and fluctuations in the grain­
density.

The errors quoted for the individual particles in Table I are 
calculated from the relation s. d. = (8.6/l/n) °/0, where n is the 
number of sections in the track. Where mean masses are quoted 
later in the paper, a further error of 2 °/0 is added, to take into 
account the possible errors in the calibration. This figure for the 
calibration error is deduced from the consistency of the apparent 
masses of all calibration particles. The weighted mass distribution 
of the A-particles, including the r-meson, and the calibration 
tracks whose residual range is > 4 mm, is shown in Fig. 2. The 
mean mass of the five measured A-particles is (986 ± 25) me.
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III. Measurements on the Secondary Particle Tracks.

Six of the secondary particles were Hat enough to enable 
reasonably accurate measurements of the grain-density and 
scattering to be made. Of these six, five lead to values of pßc 
close to 220 MeV., and a grain-density close to plateau. The 
sixth secondary, that associated with K5, was emitted with 
pßc = (170 ± 8) MeV. and a “blob” density, b*  — (1.08 i 0.02) 
times the plateau value.

The ionization was estimated by comparing the “blob” 
count with that of nearby electron tracks. It was found to be very 
important that the electron tracks selected should be near the 
track under consideration, laterally as well as in depth. It was 
usually possible to lind sufficient electron track which lay within 
one millimetre of the meson secondary at the same depth in the 
emulsion. Calibration electrons were chosen by rough scattering 
measurements which ensured that their energy lay between 30 
and 80 MeV. When available, higher energy electrons were used 
which originated in high energy pairs or other readily identifiable 
electromagnetic processes. In each plate at least twice as many 
electron track grains as grains of the secondary track were 
counted.

The values of the “blob” density, quoted in Table I, are given 
for the same point on the track as that to which the values of 
pßc given in column 9 refer, while the errors quoted have been 
calculated from the internal consistency along each track, and 
not from the number of “blobs” actually counted.

Scattering measurements were made on a Koristka micro­
scope (noise level 0.03 p independent of cell-length (Bøggild 
and Scharff, 1954)) by the coordinate method due to Fowler 
(1950). Each track was measured in 50 p cells. I) was calculated, 
using a 4 X Z> cut-off, and the noise was eliminated between 
50 p and 100 p cells on the assumption that it was independent 
of the cell-length. We were able to use such a small cell-size 
because the total noise on the readings was 0.1 p, and this was 
an advantage not only because it increased the statistics, but also 
because it reduced the effect of distortion. The distortion in these 
emulsions was low, but corrections were made for some of the 
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steeper tracks, the distortion being measured directly on neigh­
bouring parallel tracks, and the appropriate correction being 
added to each second difference.

The values of the scattering from sections of track in different 
emulsions were plotted as a function of distance from the decay 
point of the Æ-mesons, and a straight line, of slope corresponding 
to the appropriate rate of energy loss, was then fitted to the ex­
perimental points by the method of least squares, and was 
extrapolated back to the decay point. From the value of a so 
found, the value of pßc with which the secondary was emitted 
was calculated.

The value of the scattering constant was checked, on the 
assumption that the theoretical dependence on velocity and cell 
size (Williams, 1940; Gottstein et al., 1951) was correct, from 
measurements on a number of stopping particles in the emulsion. 
For each section of track, the value of pßc was calculated from 
the range-energy relation published by Baroni et al. (1954), 
which was first tested at low energy on //-mesons from the decay 
of 7ï+-mesons stopping in the stack. The true //-meson range was 
determined independently of the shrinking by the regression 
method of Fry and White (1954), which, with a slight modifica­
tion, was adapted to thick emulsions. The mean range of 20 p- 
mesons was (0.0 ± 1.4) °/0 from that given by the range-energy 
relation for 4.11 MeV. //-mesons. It was found that the scattering 
constant in these plates should be increased by (3 ± 3) °/0 over 
the value determined by Voyvodic and Pickup (1952). The 
errors on the values of pßc at emission including those arising 
from this source are set out separately in column 12 of Table I.

IV. Identification of the Secondary Particles.

The secondaries of K3, Kl, K12, K14, and Æ20 were all 
emitted with a value of pßc between 215 MeV. and 233 MeV. 
The deviations of the individual values from the mean, (224 i 7) 
MeV., were consistent with the assumption that all five particles 
were ejected with the same energy. In the following discussion 
we shall therefore assume that all these particles arose from the 
same two-body decay process. The ionization of four of them 
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was the same within experimental limits, hut that of KI was 
considerably higher.

The grain density and scattering results are presented in 
Fig. 3. The variables chosen for this figure and their theoretical 
relationship are discussed in the Appendix. The measured “blob” 
densities, bv, were converted to grain densities, <7*,  on the assump­
tion of an exponential gap-length distribution, using the approx­
imate formula

9*  = fc*  J 1 +£((7* — 1)

Here, G is the mean gap-length and a is the minimum distance

between the centres of resolved grains. We used the value 

which is sufficiently accurate for our purpose, as the quantity 
0.1 (</* —1) never exceeded 0.02.

The A’-meson secondaries are each represented by two 
points, one calculated on the assumption that the particle is a 
//-meson, and the other on the assumption that it is a jr-meson. 
File secondary of A 5 is well identified as a %-meson, fitting 
well the points obtained for the calibration tracks. With the 
exception of A'7, the other secondaries are best fitted on the 
assumption that they are //-mesons. The fast calibration tracks 
seem to lie below the theoretically calculated limit, but it may 
be that one of them was a //-meson.

Independent evidence in favour of the group of secondaries 
being really //-mesons is obtained when the mass measurements 
on the primary particles are taken into account. If we assume 
that they are 7r-mesons, and that the events do represent the 
decay of heavy mesons, then the primary mass, from the observed 
value of pßc at emission of the secondaries, would have to be 
(1070 ± 20) me, or greater. This value is well outside the standard 
error of the combined direct measurements on the tracks of 
particles A7, A12, and A20, which give a value (981 ± 23) me. 
This argument rests on the assumption that we are studying a 
decay process, but it can be shown that any form of interaction 
involving a nucleus which could lead to the emission of a 71-meson 
in the required energy region (Rossi, 1954) would require that 
the spectrum of the secondary emission energies have a width
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Fig. 3. ß2 g* vs. = In _J-—- — ß2 for the K-meson secondaries and Ti-meson 

calibration tracks. Each secondary particle is represented by two points; one 
calculated on the assumption that the secondary is a jr-meson and the other on 
the assumption that it is a /z-meson. The curves represent what are believed to 
be limiting forms of the theoretical relationship (cf. Appendix). They are fitted 

at the low energy calibration points.

of about 50 MeV., due to the motion of the nucleons in the 
nucleus. This would he incompatible with the observed homo­
geneity of the group. It should be remarked, however, that the 
mean pßc of 7r-mesons, arising from a reaction of the type 
observed by Rossi, K~ + n -> 7t~ + ^1°, would be very close to 
that of the //-mesons arising from Kfi decay. In view of the grain­
density vs. scattering evidence that Æ7 is a %-ineson (Fig. 3), it 
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might well be possible to interpret this one event as being due 
to the above reaction. There is good evidence that most of the 
18 Ä-mesons observed are, in fact, positive, since none has been 
found to be associated with an Auger electron at the end of its 
range. None of the secondaries was observed to interact in Hight, 
but this evidence is poor, for the total path length in the emulsion 
was only just over one mean free path, assuming geometrical 
cross section.

The assumption that the secondary particles are /z-mesons, 
on the other hand, leads to a mass of the primary particle, 
calculated from the observed energy of emission of the second­
aries, and assuming a decay scheme A)z p. + v, of (998 ± 25) me, 
in good agreement with the measured primary mass. The above 
decay scheme was proposed by Gregory et al. (1954) for the 
so-called Kft events which they had observed in their double 
cloud-chamber arrangement at the Pic-du-Midi. It must be 
remarked, however, that while their evidence suggests that the 
mass of the A^-meson is less than that of the r-meson, our work 
suggests that it is the same or greater.

There remains the possibility that some or all of the secondary 
particles are electrons. This cannot be ruled out on the basis of 
grain density and scattering measurements for any of the second­
aries except that of A5. There is, however, no indication of 
energy loss by bremsstrahlung, although the total track length 
measured corresponds to more than 8 radiation lengths. This 
may be seen from Fig. 4, in which the values of pßc. are plotted 
as a function of distance from the decay point. The shortest 
measured length was 2.2 cm., and the total length was 24 cm. 
The probability that any one secondary is an electron is less 
than 15 °/0 (Ekspong, 1955), and if they are indeed a group of 
particles from events of the same type, the probability that they 
are all electrons is negligible.

The decay of K 5, in which a %-meson of initial pßc = (1 70 ± 8) 
MeV. is emitted, is clearly an example of the /-meson, which is 
believed to decay according to the scheme %+~^n+ +^°- Assuming 
this decay scheme and using the observed emission energy and 
the directly measured mass of the primary particle, the mass of 
the neutral secondary is found to be (316 ± 68) me. The inter­
pretation of a large number of events similar to Æ5 has recently
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Fig. 4. pßc as a function of the distance from the decay point, for the secondary 
particles. The full line, corresponding to ordinary ionization loss alone, fits the 
observations well. The dotted curve, based on the assumption that the secondaries 
are electrons, and taking energy loss by “bremsstrahlung” into account, is much 

too steep.

been strikingly confirmed by the observation by the Padua group 
of two examples in a very large stack of stripped emulsions in 
which the secondaries are brought to rest (Rostagni, private 
communication). Both in respect of the energy with which the 
secondary is emitted, and the directly measured mass of the 
decaying particle, (996 ± 34) me, K5 is in good agreement with 
the observations hitherto reported (Dilworth et al., 1954).

V. The Production Stars.

All the K-mesons found in our stack of plates could be traced 
back to their parent stars, and the classification of each is 
included in Table I. The mean numbers of heavily and lightly 
ionizing particles emerging from these stars are very similar to 
those found by other workers, and no charged hyperons have 
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been found to emerge from any of the six stars which were 
examined in detail.

The origin of /i 1 5 deserves special mention, for it was found 
to be produced without any other visible associated tracks. 
Similar origins have been found for Æ-mesons in Bristol and 
Bombay, and for a T+-particle at Rome. In view of the evidence 
for associated production obtained at Brookhaven by the Cosmo- 
tron group (Fowler et al., 1954) it seems possible that these 
events may be of the type

n + p -*  T° + K+ + n or n -|- p —> F+ 4- I\° + n ■

VI. Discussion and Comparison with other Results.

Evidence for a decay scheme K/t -> // + v has previously 
been pul forward by Gregory et al. (1954) on the basis of 
certain S-events found in the lower chamber of a double cloud­
chamber arrangement. Further evidence is provided by some 
of the events observed in the large multi-plate chamber at M.I.T. 
(Rossi, 1954). In both instances two groups of particles were 
reported; one producing secondaries of range about 100 gm. 
cm.-2 Pb, and another secondaries of range about 60 gm. cm.-2 
Pb. These particles can be shown to be /.-mesons and, on the 
basis of the directly measured primary masses, the first group 
cannot be Tc-mesons, and are therefore assumed to be //-mesons. 
The second group of secondary particles is identified with the 
jr-mesons from the decay of the /-meson, a process previously 
observed in the nuclear emulsion. The secondary momentum 
spectrum of slow, charged F-evcnts observed in cloud chambers 
shows a definite peak, which probably includes both I\/( and 
/ secondaries. There is no evidence for //-secondaries with a 
continuous energy spectrum. The cloud-chamber has provided 
no strong evidence for a negative counterpart to either the K/t 
or the /-meson.

On the other hand, emulsion work has provided evidence 
in favour of a particle, named by the Bristol workers the x-meson, 
which decays with the emission of a //-meson whose energy 
varies within wide limits. There has hitherto been no very good
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Fig. 5. The momentum spectrum of the secondaries of K-mesons, excluding those 
which are identified as yr-mesons or electrons. The upper diagram includes only 
events which are likely to be examples of Tfy decay. The lower includes the 
remainder, and presumably represents the spectrum of secondaries from x decay.

The cross-hatched portion represents our present experimental results.

evidence for a decay of the type. This is not particularly 
surprising, for, at least in glass backed plates, it is very difficult 
to distinguish the peak due to the ZÇ decays from the nearby, 
and possibly overlapping, spectrum of the secondaries of z-decay.

Fig. 5 shows the momentum spectrum of Æ-meson secondaries 
which have not been identified as %-mesons or electrons. We 
have used the collected results listed by Dilworth et al. (1954) 
together with our own. Most of these secondaries are probably 
/z-mesons, for the jr-mesons from /-decay have a grain density 
appreciably above minimum when they are emitted, and are 
therefore comparatively easily identified. The upper histogram 
includes secondaries whose pßc at emission was within two 
standard deviations of 214 MeV., the value expected from Kfl 
decay if the primary mass is equal to that of the r-meson. The 
lower histogram includes the remainder of the examples. To 
obtain an upper limit to the proportion of Æ^-mesons in the 
sample, one may assume that the upper diagram includes only 
Kfi events, and the lower diagram only z events. Thus, the 
evidence obtained up to the time of the Padua conference would 

Dan.Mat.Fys.Medd. 30, no. 3. 2
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Table I a. Primary Particles.

1

Event

2

Star

3

Total 
Length 
(mm.)

4
Length used 

for G. R.
measurement 

(mm.)

5

Mass from 
«-R 
(me)

6

Mass from
G-R
(me)

Observer*

3 12 + 2p 3.0 1000 ; 300 1110 ± 160 A. K.
4 11+ 4 p 21 1070 ± 180 M. W. H.
5 11 + 12p 30 15.7 850 ± 140 996 ± 29 »
6 6 + 1 p 5.3 3.5 620 ±110 971 ± 59 »
7 16+ 2n 44 14.0 1290 ± 210 998 ± 30 »
8 23 + 9p 15 920 ± 170 »
9 17 + 5p 1.7 610 ± 200 »

10 8 + 4p 8.9 1030 ± 200 »
11 13 + 11> 6.1 1000 ± 190 R. M. P.
12 17+ 2p 36 1 1.0 710 + 130 969 ± 29 J. K. B.
13 24 + 3p 19 1100 ± 200 K. N.
14 6 + 2 p 22 1200 ± 200 M. w. H.
15 1 + On 22 1090 ± 180 »
16 18 + 2n 25 800 ± 120 »
17 19 + 2p 11 1210 ± 300 R. M. P.
18 13 + 2n 1 1 940 ± 160 M. W. H.
19 5 1 - 2 n 27 1050 ± 180 E. T.
20 3 + 3p 8.1 3.5 890 ± 1 10 968 ± 59 E. B.

+ Found in an earlier stack.
+ Measured photoelectrically by von Friesen and his coworkers.
* Observers: Miss E. Bach, Dr. .J. K. Boggild, Mr. M. Wolf Hansen, Miss 

A. Kolding, Miss K. Nielsen, Miss R. Moller Pedersen, Miss E. Trolle.

seem to suggest that x-mesons were rather more frequently 
stopped in the emulsion than A^-mesons.

While the statistical weight of our result is small, the fact 
that we have found five probable A^-decays and no x-mesons 
emitting a lower energy //-meson among six identified events, 
would seem to require that the A^-meson be considerably more 
common than the x-meson. This is in accord with the results 
of the cloud-chamber workers, but is very different indeed from 
that obtained from the earlier emulsion work, discussed above. 
It is, of course, possible that the discrepancy is a result of different 
scanning efficiencies. If not, it would seem that a greater propor­
tion of /w-mesons is stopped in the larger blocks of emulsion.
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Table I b. Secondary Particles.

Event

7

Total 
Length 
(mm.)

8
Length used 

for pßc 
measurement 

(mm.)

9

(MeV.)

10

b*

11

pßc at 
decay 

(MeV.)

12

©

13

Identity

3+ 63 52 199 ± 13 1.00 ± 0.01 220 ± 12 i 13 (ji, e) p
4a Nuclear Absorption
5 58 55 141 ± 8 1.17 ± 0-01 170 ± 6 ± 8 n
6 Steep
7 32 26 218 ± 16 1.02 ± 0.02 221 ± 15 ± 16 (p, c) 7T
8 Steep
9 Steep

10 Steep
11 Steep
12 46 44 199 ± 13 0.97 ± 0.01 215 ± 11 ± 13 (?r, e) p
13 Steep
14 52 19 228 ± 15 0.98 ± 0.01 233 ± 14 ± 15 (n, e) p
15 Steep
16 Steep
17 Steep
18 23
19 Steep
20 78 69 197 ± 10 0.98 ± 0.01 227 ± 7 ± 10 (tc, e) p

© Error in pßc at decay, including the uncertainty in the scattering constant. 
A Bøggild et al., 1954.

This would imply that the A„-mesons are emitted with a higher 
mean kinetic energy than the x-mesons.

One major difference between our results and those of the 
cloud-chamber work is the mass of the Æ„-meson. The Pic-du- 
Midi group quote a best value of (935 dz 15) me, obtained as a 
weighted mean between that measured directly, and that obtained 
indirectly from the assumed decay scheme and the momentum 
of emission of the secondary. Further, their value of pßc at 
emission, (206 ± 1.5) MeV., is considerably lower than that 
which we have found. In both experiments there is approximate 
agreement between the directly and indirectly obtained masses 
on the basis of the assumed A" decay scheme.

In our work, the direct and indirect masses are completely 
independent. The pßc of the secondary particles is obtained by 

2*  



20 Nr. 3

measurements of the multiple scattering, and depends on the range­
energy relation which was used in the determination of the 
scattering constant. While the range-energy relation in this region 
could be one or two per cent in error, it does not seem possible 
on this basis to bring our results down as low as those of the 
Paris group. Any distortion or noise which was not completely 
eliminated would increase the apparent scattering and produce 
too low a value of pßc, so that correction for such errors would 
increase the divergence between the two sets of experimental 
results. Alternatively, if the scattering constant is changed suffici­
ently to produce agreement, the value of pßc with which the 
secondary of A5 is emitted would be reduced from (170 ±6) 
MeV. to (153 i 3) MeV. This would destroy completely the 
excellent identification of this good event as a /-meson, and it 
could not then be identified with any well-established decay 
scheme.

The directly measured masses in our experiment, obtained 
from the measurements of mean gap-length, are entirely inde­
pendent of the range-energy relation and, of course, of the scatter­
ing constant. The calibration tracks used for comparison included 
n- and /z-mesons on the one side, and protons on the other, and 
there is no evidence for any systematic divergence of the mean 
gap-length as a function of mass from the expected relation. 
In view of the complete independence of the direct and indirect 
measurements, the mean value, (990 i 16) me, is statistically 
significant. As it lies well above the accepted mass of the r-meson, 
it is very improbable that the A)z-meson is the lighter of the two.

In the cloud-chamber work, both the directly and the in­
directly measured masses depend to some extent on the range­
energy relation chosen. If the relation used has the correct shape, 
then any change in its absolute value will shift the directly and 
indirectly measured masses in opposite directions. However, an 
erroneous range-energy relation can produce an incorrect mass 
value if both its absolute value and its shape are wrong. Again, 
it must be emphasized that most cloud-chamber measurements 
on slow, charged V-particles lend support to the Pic-du-Midi 
results, rather than to the higher value which we have obtained.

It does not now seem possible to account for the discrepancy 
between the results of the two experiments, although the similarity 
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in the mode of decay makes it seem extremely probable that the 
particles actually being studied are the same. A brief account of 
this work has already been published by Bøggild et al. (1955).*

* Note added in proof: - Since this paper was written the results presented 
at the recent International Conference at Pisa have confirmed that the 
meson decays in the emulsion rather more frequently than the %-meson, and 
that in large stacks the x-meson is much less frequently found. In addition, 
the evidence presented suggests that the mass of the An-meson is witin a few 
electron masses of that of the T-meson.
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Appendix.
By M. Scharff.

It is a well-known fact that the identification of particles on 
the basis of grain-density and scattering measurements becomes 
increasingly difficult as the particle velocity, ß, approaches unity.

Near y = _^==== = 4, where o*  as a function of energy has a 
. . . . .broad minimum, n- and //-meson tracks are indistinguishable. 

Still, at y — 2.5, the region of interest in the present experiment, 
an identification is not quite hopeless, provided that the velocity 
dependence of //*  is accurately known. The best way to determine 
this relationship would be to measure the grain density of stopping 

and //-meson tracks, for which the velocity is known from the 
range-energy relation. Due to the limited dimensions of our stack, 
however, the calibration could only be extended to y = 1.6 by 
this method. For higher energy calibration tracks we were forced 
to use supposed 7r-mesons ejected from stars, relying upon the 
rather inaccurate values of ß obtained from scattering measure­
ments. There is necessarily some doubt about the identity of 
such particles, since a //-meson may sometimes be ejected from 
a star, or may arise from an unobserved %-// decay. It therefore 
seemed desirable to consider whether an extrapolation of the 
lower energy calibration might not be more reliable. The g*-ß  
curves obtained by various experimenters differ considerably in 
the minimum value of //*  and the value of y for which saturation 
is reached, and previous experimental results do not provide a 
safe basis for the extrapolation from y = 1.6 to y = 2.5. Never­
theless, it turns out that the theoretical relation is, in this region, 
quite insensitive to rather widely different assumptions as to the 
mechanism of grain formation, and we feel it may be used with 
some confidence.

We shall first review the theory which has been developed by 
several authors. The grain density of a track produced by a 
particle of relativistic velocity is assumed to be proportional 
to the mean energy loss of the particle in emulsion (Fowler, 
1950) or, more precisely, to the mean energy gained by those
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AgBr crystals lying directly along the track (Stiller and Shapiro, 
1953; Messel and Ritson, 1950). To calculate the latter quantity, 
one may then use the previous results of Betiie (1933) and 
Møller (1932) who calculated the energy loss, neglecting 
collisions with an energy transfer greater than a certain value, 
T', and obtained

dE\
dRJ

= BNZ
T'

(1)

where B— ---- —-1/ß2, Z is the atomic number, TV the density 

of atoms and I (10 eV.) x Z is the average excitation potential 
of the stopping medium. Formula 1 is only valid for y of the 
order of unity. At higher energies the relativistic polarization, or 
“density” effect, of Fermi (1940) enters, causing (dE/dR)r to saturate
at a value which may be obtained from formula (1) by substituting

/ = 2 Zn —

Here œ0 =

for the velocity-dependent term £(ß2) = In 

(4 7te2NZ\112 . , , . ,
— is the classical resonance

\ m I 
frequency

of the electrons in the medium. Taking for AgBr I = 415 eV. and 
Zico0 = 34 eV., one finds / = 5.0.

The form of equation (1) suggests that we plot the quantity 
ß2g*,  which may be termed the “reduced grain density”, as a 
function of £. If g*  and ÇdEfdR}T, are in fact proportional, such 
a plot will, at low energies, be a straight line given by

= const x (L + £), (2)

where L = In
2 me2- T'

I2
, while at high energies

ß2g*  = const X (L + Z). (2')

L may now be determined empirically from the value ß2g*  = 
0.735 at £ = —0.1 measured on the stopping meson tracks, taking 
a saturation value ß2g*  = 1.0. The result is L = 14.3, from which 
follows ß2g*  = 0.79 at £ = 1.0. This analysis may be refined by 
introducing a slowly-varying density correction, <5, (A. Bohr, 
1948), and assuming ß2g*  (L + £— 5). This correction is
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included in curve 1 of Fig. 6, which is normalized to unity, not 
at £ 00 , but in the energy region (£ 8—9) of the electron
tracks chosen for standardization of the grain-density measure­
ments. This refinement makes little difference to the curve, the 
value of L still being sy 14. Such a value for L, however, leads 
to the result T' 200 keV., which is at variance with the usual 
interpretation of T' as the upper limit to the energy of struck 
electrons which can contribute appreciably to the ionization 
within the crystal. From this point of view, T' might reasonably 
be expected to lie between 2 and 10 keV., corresponding to L 
between 9.5 and 11, which in our stack would lead to a satura­
tion value of ß2g*  =1.1.

Still, this apparent inconsistency can be removed without 
violating the assumption that grain density is proportional to 
local energy loss. A major part of the relativistic increase of ß2g*  
arises from the effect of the transverse component of the field 
of the fast particle, and part of the energy lost in this way may 
be emitted as Cerenkov radiation. The fraction, a, absorbed 
locally depends on the damping of the atomic oscillators. If we 
use the theoretical value L = 10 and adjust a to fit the calibration 
point, we obtain curve 2 of Fig. 6, for which a = 0.70. Without 
damping, (« = 0), ß2g*  — 0.78 at £ oo , while for strong 
damping, (a = 1), /tø1.1, as previously mentioned. Actually, 
Sternheimer (1953) found 1 —a = 0.02 by a direct approximate 
calculation, so that it remains doubtful whether our data can be 
fitted by a consistent theory of this type. For this reason we shall 
discuss briefly a more general approach.

Let us assume that, for a given development, the probability 
that a crystal is developed is a function /‘(Zl) only of the energy, 
A, transferred to it. The grain density must then behave as 

\f(A) o(A)dA, a (A) being the cross section for an energy 

transfer A. The theory discussed above is a consequence of the 
rather special assumption /*(/!)  œ A . The general case of arbitrary 
f(A) can be analyzed by means of the distinction, introduced 
by N. Bohr (1948), between free collisions and resonance collis­
ions, the latter containing the variation with £. It may then easily 
be shown that the reduced energy loss is still represented by ex­
pressions of the form (2) and (2'), although the values of L and
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Fig. 6. The theoretical variation of ß2 g* as a function of The different curves 
result from the various possible initial assumptions about the mechanism of 
energy transfer to the silver bromide crystals and about grain formation, which 

are discussed in the text.

I will depend on /’(zl) as well as on the distribution of atomic 
oscillator strengths.

To test the sensitivity of the theoretical ßI 2g*vs. £ curve to the 
form of f(A), we choose a form which is extremely different 
from the previous one, viz.

_ I 0 for A <
“ I 1 for d > To.

00

Then, will vary as \a(Zl) dA, equivalent to the suggestion 
•iTo

of Brown (1953) that a crystal is developed when the energy 
transferred to it exceeds a certain value To, which depends only 
on development. Curve 3 of Fig. 6 is the result of this assumption, 
calculated using the simple oscillator distribution of A. Bohr 
(1948) and assuming strong damping. To was chosen to be 200 eV., 
to give an absolute plateau grain density of 10 per 50 /z. The 
curve is a straight line below £ = 3, as in this region the polariza­
tion affects only atomic frequencies below To/A. The slope of 
the line depends somewhat on the atomic model used, but an 
upper limit may be calculated from the extreme assumption that 
the rise is concentrated on oscillators of frequency To/fz.
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Previous experimental results fall mainly into two groups. 
Stiller and Shapiro (1953), and Fleming and Lord (1953), 
fit their data with curves of the form (2) (or (1)), whereas the 
results of Pickup and Voyvodic (1950), Morrisii (1952), Daniel 
et al. (1952), and Michaelis and Violet (1953) correspond 
more closely to type (3). From the general treatment of the 
formation of grains given above, one would not expect such 
large differences between different batches of plates, but it may 
well be that, allowing for small differences in experimental 
techniques, all the data could be fitted by one curve intermediate 
between (2) and (3). In any case, however, all the empirical 
curves are consistent with the general scheme, in the sense that 
each one can be accounted for by some particular choice of 
/'(Zl), intermediate to the two rather extreme assumptions men­
tioned above. We are therefore fairly confident that this is also 
true for the extrapolated curve required in the present experiment.

In Fig. 3, the two limiting curves are fitted so as to deviate 
about one standard deviation on each side of the calibration 
points. The upper curve is of type (3) with maximum slope; 
the lower one is of type (2) with T' = 1 keV.

A fuller account of the Appendix will be published shortly.
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The Hall coefficients and resistivities of Cu—Zn alloys in the a- and grange 
have been determined by an A.C. method. The observed resistivities are in agree­
ment with earlier results. The sign of the Hall coefficient is normal for all speci­
mens investigated; in the «-range, Rh decreases with increasing Zrt content more 
rapidly than predicted by free electron theory and shows a strong temperature 
dependence for the Zn rich alloys. For ß-brass, Rh is practically proportional 
to the resistivity for various temperatures including the temperature range of 
the order-disorder transition. Some implications of the results for the band struc­
ture of these alloys are suggested.

Introduction.

easurements of the Hall coefficient have for a long time
IV JL been extensively employed as a means of obtaining some 
insight into the band structure of pure metals and into the effect 
of alloying on this band structure. According to current theories, 
the Hall coefficient should, to a first approximation, be independ­
ent of temperature, at least at the higher temperatures where a 
time of relaxation can be defined. For this reason, and because 
of experimental difficulties, nearly all measurements have been 
made at room temperature only. Significant exceptions are the 
Hall coefficients of ferromagnetic materials, which have recently 
been studied in greater detail both experimentally and theoretic­
ally, and which exhibit strong temperature dependence and 
other anomalies.

For non-magnetic metals, and especially for alloys, the ex­
perimental evidence is scanty concerning the effect of temperature 
(including the effects of allotropic transformations and melting) 
on the Hall coefficient. The choice of «- and /5-brass for the 
present investigation was dictated partly by the occurrence of 
an order-disorder transition in /3-brass at moderate temperature, 
and partly by the availability of results of recent room tempera­
ture measurements on these alloys by conventional D.C.methods.

1*
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Our results show a pronounced temperature dependence, also 
for «-brasses, indicating that measurements at one temperature 
only may be of limited value also in other cases.

Experimental Method.

In order to make reliable determinations of the Hall coefficient 
at high temperatures we have chosen to use an A.C.apparatus, so 
that disturbing thermal and Ettinghausen e.m.f.’s are eliminated. 
Such a method is now in common use; the experimental 
set up employed in this work presents a modification which 
permits simultaneous determination both of the Hall coefficient 
(Rh) and the resistivity (p) with a minimum of probes attached 
to the sample.

Fig. 1 shows a schematic view of the equipment. The alter­
nating current is taken from a push-pull amplifier (driven by 
an R-C oscillator) through a shielded transformer (Tx) with very 
low output impedance. When measuring Rh, the switches and 
S2 are set in position a and the current is passed directly through 
the sample between A and B; when measuring q, S1 and S2 
are brought into position b and the current then Hows through 
the series connection of the precision resistance R1 and the 
sample. In principle, the Hall voltage, developed across the 
sample, might be measured directly between probe no. 3 and 
the sliding contact 4 of the potentiometer P (the ends of which 
are connected to the probes nos. 1 and 2) if P is first balanced 
against 3 with zero magnetic field. As the Hall voltage is of the 
order of micro-volts, this direct method necessitates the use of 
a stable oscillator and a stable high gain amplifier; a determin­
ation of the measuring current is also necessary. These diffi­
culties can be avoided by compensating the Hall voltage, dis­
placing the slide-contact 4 of P; this potentiometer must there­
fore be calibrated very accurately. The actual construction, 
which is somewhat more complicated than indicated on Fig. 1, 
permits readings to one part in a million over a limited 
range.

The zero indicator connected between 3 and 4 consists of 
a well shielded input transformer P3, a battery driven amplifier 
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A1} and a selective feedback amplifier A2. The maximum total 
gain of this system amounts to 2 X 109. The noise level referred 
to the input terminals 3 and 4 was about 3 X 10~9 volts when 
the indicator was tuned to 25 Hz (with a bandwidth of 1 Hz); 
this rest signal, usually observed on the oscilloscope, consisted 
mainly of 50 Hz pick-up from the mains.

In order to eliminate from the zero indicator any inductive 
or capacitive out-of-phase voltages existing between 3 and 4, 
the secondary of a variable air transformer T2, the primary of

Fig. 1. Block diagram of the sample A—B with the probes 1, 2, and 3 and 
associated electronic equipment.

which is connected in series with the measuring A.C.current, 
is inserted in series with I he zero indicator.

The samples were rectangular, 45 mm x 10 mm, with the 
probes 1 and 2 placed at a distance of 15 mm. The connecting 
conductors consisted of strips of copper foil, silver soldered to 
the sample by electrical heating with a spot welding apparatus. 
Insulation was provided by mica sheets, the whole assembly 
being firmly clamped between two thick copper plates. The 
outer faces of these plates were furnished with heating, elements 
and thermal insulation; this furnace could be mounted in a 
box fitting into the air gap of the magnet. To prevent oxidation, 
carbon dioxide was passed through the box. The temperature 
was measured by a chromel-alumel couple, the junction being 
insulated from the sample by a thin mica sheet.

To measure q, P is first balanced with zero magnetic field, 
while the switches and S2 are in position a; and S2 are 
then turned to position b, and the decade resistor R2 is used
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to balance the Wheatstone bridge formed by the resistances /?2, 
rp + ri + r2> + r3 and the sample resistance between 1—1’
and 2—2’. As 
probe no. 3,

/ \ Pi' rp 1

where q is the resistivity, t the thickness of the sample, and 
« is a numerical factor arising from the fact that the measuring 
current is fed to the sample through the point-like contacts A 
and B so that the current field in the regions between 1—1’ 
and 2—2’ is not quite homogeneous. By separate measurements 
on samples of different lengths, the value of a for the sample 
length normally used was determined to 1.010 ± 0.003. The 
wiring resistances rx, r2, and r3 were suppressed to such values 
that their effect on the determination of q was less than 1 per 
cent. The switch S2 was of the mercury type so that a small 
and reproducible contact resistance could be obtained.

To measure Rh, P is balanced with the magnetic field on 
(Sx and S2 are in position a); denoting the difference in potentio­
meter readings for the two field directions by Ax, we have

1 + r2
iv 2 B al \ rp

where B is the induction in the air gap of the magnet and a 
is the same correction factor as in (1). The correction factor ß 
is different from unity owing to the finite length of the sample; 
from the published solutions of this problem ([1]...................[6])
we estimate ß to 1.010 ± 0.004.

From (1) and (2), Rh may be obtained.
The measurements were carried out with a current of 10—15 

amps, a frequency of 25 Hz, and in a field of 0.55 W7>/m2. 
Experiments with other values revealed no dependence of q 
and Rh on these factors.

The accuracy of the results is di 0.5 °/0 as regards the relative 
temperature dependence of q and Rh- The absolute values of 
o and Rh are, however, not better than ± 2 to 3 °/0, owing to 
uncertainties in the dimensions of the samples. The temperature 
is considered correct within dz 2°C.

Rh/q

r3

1 « >
m frp R1 /

77 rP we have, irrespective of the placing of
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Results and Conclusions.

Fig. 2 shows the results of resistivity measurements. The 
copper sample was cut from commercial copper foil, the samples 
of «-brass were the same as those employed by O. Gram Jeppe­
sen [7], and the sample of ß-brass was prepared from a cast 
block with 52.3 atomic °/0 of copper. The impurity contained 
in this block, consisting mainly of Pb, Ag, and Cd, was less 
than 0.03 °/0. The ß-brass sample was milled down from the 
cast block and given some final rollings combined with a heat 
treatment at 600° C for a few seconds.

0
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The samples were not systematically annealed, but for each 
sample at least two measuring series, from 550°C to room tem­
perature, were carried out; in general, the differences between 
the two measuring series were less than 1 °/0. This fact and the 
data from the many annealing experiments on cold worked bras­
ses (cf. the review article by T. Broom [8]) make us believe that 
our values of q and Hh represent the true equilibrium values of 
these quantities. This applies also to ß-brass, for which Eggle­
ston and Bowman [9] have shown that disorder, induced by 
radiation with «-particles at —100° C, anneals in less than five 
minutes at 0°C.

The resistivities of the «-brasses are in agreement with earlier 
results [10]. The q-T curve for the ß-brass is in agreement with 
those obtained by Webb [11] for single crystals. Especially we 
observe, in accordance with Webb, that the slope of the resist­
ivity curve for the disordered state is greater than that for the 
totally ordered state, to such an extent that, if ßdisord is extra­
polated linearly to 0° K, we obtain a negative residual resistance. 
Moreover, Webb states that this effect decreases on approaching 
the ideal 50 : 50 composition. The data of Steinwehr and 
Schulze [1*2]  for a single crystal with 50.9 atomic °/0 (hi seem to 
extrapolate to a slightly positive residual resistance.

It is well known that the anomaly in the specific heat of 
ß-brass extends 100°C above the transition temperature; this is 
usually attributed to the presence of short range order. Since 
the effect of this kind of order on the resistivity is not definitely 
established ([8] § 6.3) it might be of interest to extend the measure­
ments of resistivity to higher temperatures.

Rh versus T is shown in Fig. 3, while Fig. 4 gives the quantity 
q/Rh (which in the free electron picture of metals is simply the 
reciprocal of the mobility of the electrons) versus T. The main 
features of these curves are:

a) The sign of Rh is normal (negative) in the whole temperature 
range for both a- and /hbrass.

b) In the «-range, Rh is nearly a linear function of T, the slope 
increasing with increasing Zn-content, especially near the 
phase boundary. For the specimens near this boundary, Rh 
is almost proportional to q (Fig. 4).
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c) For ß-brass, Rh is also nearly proportional to q, so that the 
anomaly in Rh is of the same type as that in q. Thus, the 
sign reversal of Rh observed in CusAu [13] and in Ni3Mn 
114] is not revealed by the order-disorder transition in ß- 
brass. In this connection, we note that the thermoelectric 
force, as determined by Webb [11] for ß-brass, behaves 
quite regularly from 0 to 600°C.

d) The room temperature values of Rh for the «-brasses are 
a few per cent lower than those previously obtained by 
0. Gram Jeppesen [7] from D.C.measurements on the same 
specimens. The value of Rh for Cu at 20° C is in agreement 
with newer results ([7], [15]) which center on the value 
— (5.25 ± 0.1) 10-5 cm3 /Coulomb.
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06-

In Fig. 5, Rh is plotted against the content of Zn for T = 
20°C (curve C) and for 7' — 600°C (curve B); the values of 
Rh computed from the Sommerfeld formula (assuming that Cu 
contributes one and Zn two electrons per atom to the conduc­
tion band) have been plotted for comparison (curve A).

Concentrating first upon the low temperature values for the 
«-brasses, their deviations from the free electron values are 
easily understood in terms of the deformation of the Fermi 
surface from spherical symmetry when the Brillouin zone of 
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the alloys is gradually filled up. It is generally assumed (Wilson 
pp. 104 ft. [16]) that the instability of the «-phase in alloys 
like Cu-Zn occurs when the Fermi surface due to the filling up 
of electrons reaches the position corresponding to maximum 
electron level density. As this Fermi surface will be in contact 
with the boundaries of the Brillouin zone, it will be strongly 
deformed. It might therefore be expected that it contributes to 
the Hall effect an electron-like and a hole-like term which nearly 
cancel.

The temperature dependence of Rh might be explained by

Fig. 5. Hall coefficient versus Zn content.
A: calculated according to free electron theory.
B: experimental values for T = 600° C. 
C: experimental values for T = 20°C.

letting the division of the Fermi surface into an electron-like 
and a hole-like part depend on temperature, but a formal treat­
ment along these lines seems to involve too many arbitrary 
assumptions to be really significant. Prof. B. L. Averbach (pri­
vate communication) has tentatively suggested that this de­
pendency is due to the thermal smearing of the Fermi surface 
at elevated temperatures, tending to restore its spherical form 
and thus reducing the deviation of Rh from the free electron 
value; this suggestion is supported by the shape of the curves 
in Fig. 5.

For the disordered state of /3-brass, the above remarks on 
the «-phase may be applied literally, the only difference being 
that the Brillouin zone of the b.c.c. lattice can hold more elec­
trons per atom than the Brillouin zone of the f.c.c. lattice before 
the point of maximum level density is reached.
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Thus, the rather close agreement between the disordered 
ß-brass and the Zn rich «-brasses docs not seem fortuitous; 
unfortunately the disordered state cannot be quenched, and 
linear extrapolation to lower temperatures is unsafe, especially 
because linear extrapolation of the resistivity leads to a negative 
residual resistivity.

When /bbrass is brought into the totally ordered state, i.e. 
below 200°0, the original Brillouin zone is divided into two 
equal parts by the formation of interior boundaries (correspond­
ing to the superlattice lines observed in X-ray diffraction). If 
there is no overlap between the subzones, the energetically lower 
zone will be full and the higher one will be about half full, as 
the electron-atom ratio of the /5-phase is near 3/2. Thus, we 
should expect the ordered state to behave like a simple metal,
i.e.  with Rh close to the free electron value and only slightly 
temperature dependent, in disagreement with the actual be­
haviour. If the subzones do overlap to such an extent that both 
hole and electron conduction occur, a Hall coefficient of small 
magnitude at low temperatures and with a strong temperature 
dependence might result, in accordance with experiment.

In the intermediate temperature range from 200°C — 470°C, 
where the long range order is gradually destroyed, the band 
structure proposed for the ordered state changes continuously 
into that of the disordered state; we do not, however, suggest 
any explanation of the fact that RhIq is nearly constant during 
this transition.

The author wants to express his gratitude to Nordisk Kabcl- 
og Traadfabrikker A/S for the preparation of the ß-brass, and 
to Professor T. Bjerge and Professor H. Højgaard Jensen for 
commenting on the manuscript.

Physics Department,
Technical University of Denmark.
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Introduction.

Collective excitation spectra of rotational type are associated 
with nuclei possessing an equilibrium shape which deviates 

strongly from spherical symmetry.1
The rotational character of the motion is shown by the energy 

ratios, spins, and intensities, which also give evidence that the 
nucleus possesses axial symmetry and rotates about axes per­
pendicular to the symmetry axis.

More detailed information about the collective rotational 
motion is obtained from the moments of inertia, which can be 
determined from the observed rotational energy levels. The 
moments are found to be appreciably smaller than they would 
be if the nucleus performed a rigid rotation and, in addition, 
they have a strong dependence on the nuclear deformation. The 
collective molion of the nucleus has been compared with the 
hydrodynamical flow, assumed irrotational or potential, of a 
liquid drop whose boundary is rotating without change of form. 
The corresponding classical hydrodynamical problem has been 
studied extensively in connection with the theory of rotating stars 
(cf. Lamb). An exact solution has been given in the case of a 
rotating ellipsoid with constant density.2

This potential flow for an ellipsoidal boundary has been used 
by A. Bohr and B. Mottelson with a somewhat generalized 
density distribution such that the surfaces of constant density are 
similar ellipsoids.

1 For a survey of the theory of rotational states and of the available experi­
mental evidence, cf. Bohr, 1954; Bohr and Mottelson, 1955. Cf. also Bohr, 
Fröman, and Mottelson, 1955; Alaga, Alder, Bohr, and Mottelson, 1955.

2 For the rotating ellipsoid, the condition of constant pressure at the surface 
can be fulfilled, assuming Newtonian attraction, both in the case of irrotational 
flow and for a flow7 without internal motion. In the case of a nucleus, the surface 
condition, of course, has quite another aspect.

1*
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For the case of an ellipsoid of revolution of constant density, 
rotating about an axis perpendicular to its symmetry axis, the 
moment of inertia is given by

(1)

where a is the major semi-axis, e the eccentricity, and M the mass 
of the nucleus. The nuclear eccentricity may be determined from 
the quadrupole moment of the nuclear shape

where Z is the nuclear charge number, and where the positive 
and negative signs refer to prolate and oblate shape, respectively.

It is found, however, that the moments of inertia, calculated 
from (1) by means of the observed quadrupole moments, are 
smaller than the observed moments of inertia by a factor of about 
three to five. This situation is not appreciably changed by con­
sidering the above-mentioned generalized density distribution.

A possible reason for this discrepancy could lie in the assumed 
density distribution. It has been suggested (Johnson and Teller, 
1954) that the protons are more concentrated towards the centre 
of the nucleus than are the neutrons. Such an effect means a 
smaller value of “a” in (2) than in (1). This increases the 
moment of inertia calculated from Qo. Since, however, the ex­
pected differences in “a” are only of the order of 20°/o, this 
effect cannot account for more than a minor part of the discre­
pancy.

As pointed out by Bohr and Mottelson, another possible 
way of explaining the discrepancy within the framework of the 
potential flow model would be to consider nuclear boundaries 
deviating from the ellipsoidal shape. In order to investigate this 
point, the potential flow has been calculated for some boundaries 
of more general form, illustrated in Figs. 1, 2, and 3.

These calculations, reported in the following, show that the 
moment of inertia as well as the quadrupole moment is quite 
sensitive to relatively small deviations from ellipsoidal shape, 
but indicate that the ratio of 3/Q2, which is the quantity that
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can be directly compared with the experimental data, is affected 
to a much lesser extent.

Our results thus indicate that the model considered cannot 
be expected to account for the observed magnitude of S/Qy, and, 
therefore, suggest significant departures of the collective motion 
from potential llow.

This conclusion is in accord with the recent findings of Bohr 
and Mottelson (1955) who have investigated the validity of the 
assumption of potential flow for the nuclear collective motion, 
and who have shown that important deviations from potential 
flow are to be expected as a consequence of the nuclear shell 
structure. The effect is to increase the moment of inertia, and 
estimates indicate that it is possible in this way to account for 
the magnitude of the observed moments.

Characteristics of the flow and of the considered nuclei.

Assuming a constant density for the nuclear fluid, the velo­
city, assumed irrotational, obeys the equations

rot n = 0, div v — 0. (3)

Introducing v = grad ø (for convenience ø is chosen as the 
negative of the velocity potential), we get

J0 = 0. (4)

From the rotation, the boundary obtains a velocity whose 
normal component shall be equal to the normal component of 
the potential flow. Thus, the boundary condition is time-depend­
ent. A coordinate system fixed in space is denoted by (X, Y, Z), 
and the rotating system by (rri/z). Then the (xyz) depend on 
(X, F, Z, f). In the following, ø and other quantities are expressed 
in (xyz), and are thus time-dependent.

We first consider the case of an ellipsoid of revolution with 
axes 2 a and 2 b, the symmetry axis being 2 a. The ellipsoid ro­
tates about an axis perpendicular to its symmetry axis with an­
gular velocity co. In the body-fixed coordinates, the boundary 
condition is constant and given by
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co (a2 — Z>2) xy = -- b2x + -x— a2y, (5)
dx d y

where the axis of rotation is chosen as the z-axis, while the 
x-axis is the nuclear symmetry axis.

The boundary condition is fulfilled by the potential

K a2 — b2
(P M (6) a2 + b

For this flow, one calculates

J- 1 C ^2 / 1 ^«2C4 2 z-x
Erot -\Q V2 dr =2^2, (7)

2.)  2 a (2 — e~)

corresponding to the value (1) for the moment of inertia.
In elliptic coordinates, the exact solution for the ellipsoid 

quoted above has the property of being the first term in an ex­
pansion in harmonic functions. There is therefore some advan­
tage in using elliptic coordinates. They are given by (see, e. g., 
Lamb: Hydrodynamics, p. 139)

x — k /i£,

y — k \ 1 — a2 ■ J ' C2 — 1 cos (p, 

z = k I 1 — /li2 • J C2 — 1 sin ç?.

(8)

For constant C — Co> the curve in /z is an ellipse with a = 
Å’Co and b = | a2—k2. Thus, 2 k is the focal distance and Co = 
e_1. Constant pt = pi0 gives a hyperbola in C with a = kpc0 and 
b = \/k2 — a2.

We will now seek other boundaries than the ellipsoidal one. 
This can be done by giving C of the boundary as a suitable 
function of /o. In this note, we will use

C = fW = 50 + Co + C2yu2 + C4/z4. (9)

An even function of /.t has been chosen in order to describe 
nuclei with reflection symmetry. For unsvmmetric nuclei, the full 
series in // would be needed.
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For comparison with the ellipsoidal case, two different shapes 
of the nucleus will be treated, both converging into an ellipsoid 
for small parameters.

1. The volume and the major axis remain constant.
2. The volume and the quadrupole moment Qo remain 

constant.

First approximation. In the constants Cn, the change of 
volume is

d V = const. (10)

The change of the major axis is

Further,
da — A’ (Co + C2 + C4). (11)

eQ0 = {drQe(3 x2 — r*),  (12)

where e is the total charge.
For oe constant, we get in first approximation

(13)

In the following we will especially illustrate the calculations 
for the eccentricity e = 4/5, which gives a quadrupole moment of 
the same order as, though somewhat greater than, is common 
among the rare earth nuclei. This gives the following relations 
for the Cn in the two cases under consideration.

1. Co = — C2-0.1430 C4 = — C2 0.8570.

2. Co = — C2-0.0863 C4 = — C2-1.267.
(14)

The coefficients for moderate changes of the surface turn out 
to be relatively large. In the following we will therefore check 
the first order approximations of the various physical quantities 
by numerical calculations for a special surface. We choose case 1 
(constant volume and major axis) with C2 — 0.4. To first approxi­
mation we get
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Fig. 1. V and a constant.
C2 = 0,4

Co = —0.0572, C4 =—0.3428.

By numerical calculation,

Co = —0.0591, C4 = —0.3409.

Fig. 1 gives the boundary 
for these last values. Fig. 2 
gives the boundary for C2 = 
— 0.2. Case 2, (constant V 
and Qo) with C2 = 0.4, is il­
lustrated in Fig. 3.

In case 1 we get the fol­
lowing values of Qo.

a) First approximation :

Qo = ?F[1 + C2-1.091] (15) 
5

or for

C2 = 0.4: Qo = F-0.5746.

considered. This moment mav

b) Numerical calculation

Qo = F-0.5780. (16)

Calculation of So.

It is of some interest to 
calculate also the 24-pole mo­
ment of the nuclear shapes 

be defined by

fi So = < P4 > = Qe (35 x4 — 30 x2 r2 + 3 r4). (17)

For the ellipsoid, this gives

Sj = F-0.6857. (18)
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In first approximation,

+ 99 es (1 — e2) Co-99 e4(3 —e2)

+ C211 (28 e2 — 15 e4 — 3 e6) + C4 (88 + 144 e2 — 147 e4 —

Case 1. So = Sj(l + C2-0.426) = k4 0.8026. (20)

The numerically calculated value is: So = k4 0.8032.

Case 2. So = Sj(l — C2 1.883) = F-0.1692. (21)

Determination of the flow.

In elliptical coordinates, the potential equation is as follows :

d 1 d20 d „ dø
dfi 1 — /z2 d cp2 d £

(1 — £2)_ +

The general solution, free from singularities inside the boundary, 
is

= ^P8n W ?n (C) [Ans cos s cp + Bns sin S(p] , (23)
n, s

where P® is the usual spherical harmonic.
The coefficients Ans and Bns can be obtained from the bound­

ary condition

(24)

which expresses the equality on the boundary of the normal 
velocities of the potential flow and of the rotation (£ = /’(/z)).

Here,

Vn = cok2 KJ---- ÆJl£----- 1 (/z + Cf (zz)) COS cp (25)
B(/z)

with

(19)

(22)

B (/z) = k |/C2 - /z2 • |/C2 —1 + (1 - ^) f (^)2. (26)
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Thus, s = 1; Bns = 0.
We get the following expression for 0:

Further :
d<I> dø C2—1 dø (1—[Pyf'tjP)
dsn dC B dpi B

Ô0
Vn shows that 0 contains the factor cos <p.Now, — =

$ $n

0 = y An I 1 - P'n (/<) I > 1 P'„ (C) COS . (28)

Before treating the more general case, we give the llow for 
the ellipsoid treated above, this time in ellipsoidal coordinates.

Then, f'(jbt) = 0, and the boundary condition gives

YAnPn' (/<) + (C2_l) P."(C)1 = (29)

For constant C = Co we get: Pn(ft) = const-/z, which means 
n — 2. Thus, for an ellipsoid, the equation is satisfied by the 
first term in the expansion, with

A 2 ----  co.
9 (2 - e2)

(30)

In the more general case, we will try to satisfy the boundary 
condition by taking into account further terms in the series for 
0. All calculations can be made explicitly. However, the practical 
difficulties rise rapidly with the number of terms. In the follow­
ing, only the three first terms of 0 have been used, as they give 
an accuracy that seems satisfactory in the present case.

The three coefficients An in

& = ^An&n (31)
2,4,6

will be determined by two different methods.

A. The expressions in the boundary condition

(32) 
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are developed in power series of /z, and the coefficients for /z, 
/z3, and /z5 are identified. Thus, lhe condition is best satisfied 
along the equator of the nuclear drop. The formulae being 
comparatively long, we only give the results for e = 4/5.

A2 = A2(l — Co-2.354 + C2-1.662 + C4 1.472)

A4 = — C2- 0.00369 cok2 + C4- 0.000733 cok2

A6 = — C4-1.473-IO-4 coF.
(33)

1. Constant T and a.

A2 = A2 • ( 1 T C2 • 0.736)

A4 = — C2-4.314-10-3 a)k2

A6 = C2-1.26 IO-4 coF.
(34)

2. Constant V and Q.

A2 — A2, the coefficient for C2 being zero.

A4 = — C2- 0.00462 co F

A6 = C2-1.87-10-4 Mk2.

(35)

B. Since the accuracy of these coefficients is rather important, 
we compute them, in case 1, with C2 = 0.4 from an integral con- 

00 
dition for the flow over the boundary. The quantity V„-------

dsn 
represents the flow across the boundary owing to the error in 
the approximation. Now we try to minimize the square error 
integral.

Putting
C I W) = FW cos <p

(36)

we have the condition

W = jik \ dpi — ^An(pn(/u,y)2 = minimum. (37)
»’o
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With usual notations, we get the following system of equations:

(F ,<Pn) — , Am((pm , <Pn) •
m

(38)

The integrals are calculated numerically for C2 = 0.4. 
We obtain

A2 = 6.908-IO-2 co F

A4 = — 1.606- IO-3 co F

A6 = 6.15 • 10-5 coF.

(39)

(For this value of C2 the numerical coefficients of the first 
approximation given above are

6.768-10~2, — 1.726-10-3, 5.04-10-5, respectively).

Fig. 4 shows how F(,x) = V" | B, where B varies slowly, is 
approximated by A2ç?2 -f~ h4<y4 + A6ç>6. For comparison, the first 
term is also inserted, giving the shape of ç?2-
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Calculation of Erot.

We use the expressions above for the collective flow to calculate

Erot, which is given by the integral over - grad20-dr, where 

dx = k3 * d pd^dcpfJF — ^u2).

2. Erot = E°ofc (1 — C2 • 0.002), which means practically no
change of Erot for the change of shape characterized by con­
stant Qo.

We obtain

Erot = (40)
2 J-i Ji

where

G(7,/;) = («—1)[(2>UM/'V'»'(O)2 ! (2?AUV(/«)/j»'(C))2] 

with
/?n(x) = xPn'(x) + (æ2 — l)Pw"(æ). (42)

First approximation. The terms containing A%, Al, and A4A6 can 
be neglected. In the terms with A2A4 and A2A6 we can put C = 
Co- Because of the properties of Legendre functions these inte­
grals are then zero. The only non-zero term is easily calculated.

Erot = 81 U +<C»(7 e5 — 63 e3 + 70 e) + C2(3 e‘
10 k~ e ’

— 25 e3 + 28 e) + C4(5 e5 —49 e3 + 54 e) 1 /3> 1/7 • (2 — e2)’1 • (1 — e2)“1]. |

We compute Erot for the two cases, V and a constant, V and Qo 
constant.

1. EIot = E^-(l + C2-1.827).

For C2 = 0.4, the change is 73 °/0.
This means a rather strong dependence of Erot on the shape 

of the nucleus.

(41)

(43)
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Numerical calculation in case 1 for C2 = 0,4.

We will make the calculations for a finite change of the 
boundary. This, of course, implies long calculations. However, 
the great change of Erot from the first approximation makes 
this test desirable.

We write: Erot — ^AiAjKij, where (i,j) = (2, 4, 6) and the 

Kij are defined by formulae (40—42).
All calculations can be made explicitly, but the number of 

terms increases very rapidly for higher indices. Therefore all 
terms except the first are calculated by an exact integration in 
5 and a subsequent numerical integration in //.

We find the following values:

Erot = ^(A|-37.58 + 2 A2A4-81.4 + A^-5985 — 2 A2A6-616

+ 2 A4A6-1.05 • 104 + A|-3.8-106)
2 7 5

= co aq (().]793 0.0180 +0.0154 — 0.0052 — 0.0021 +0.0014)

co2ngkö
2

0.1708.

(44)

Comparing with the first approximation, which gave

we find here
Erot — EIoi’1.13,

Erot — .Erot'1.93

(45)

(46)

which shows that the first approximation is qualitatively correct, 
even if the corrections to the flow are larger than to the static 
moments.

Comparison of Qo and

As mentioned in the Introduction, the quantity which provides 
the most direct lest of the potential flow model is the ratio between 
Oø and the moment of inertia obtained from Erot-
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Case 1.

First approximation.

Qolxi = (Qo/xøo’Cl T Cg'0.355). (47)

The change would go in the direction indicated by the experi­
ments for negative C2, illustrated by Fig. 2. However, in any 
case the change is small.

Finite deviation.

This should be compared with the value 1.14 of the first ap­
proximation.

Case 2.

For constant V and Qo the change in Erot is insignificant.

The calculations show that, for comparatively moderate 
changes of shape of the nucleus, the quantities $, Qo, and So 
are changed appreciably. The value of Qo/3, on the contrary, 
is rather insensitive to such changes in shape which have been 
considered in these calculations.

On this occasion, I should like to express my deep gratitude 
to Professor Niels Bohr for his great interest in my work and 
enlightening discussions during my many stays in Copenhagen. 
Further, I want to thank Drs. Aage Bohr and Ben Mottelson 
for valuable suggestions and for their kind communication of 
investigations prior to publication. I also thank Kerstin Kjäll- 
quist, F. M., and Rolf Bengtsson, F. K., for their helpful aid 
in carrying through the calculations.
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Introduction.

In a previous paper [A] a general theory for interference 
filters (with two, three, or four reflective systems of layers) 

has been developed and numerical calculations of 1 (Å), R (2) 
(i. e. the intensity distribution in transmitted and reflected light) 
have been carried out in the special case for the reflective systems 
consisting of silver layers.

The present paper will deal with the problem of measuring 
the thickness of the different thin layers during the evaporation 
process.

In a following paper the apparatus used for producing interfe­
rence filters of a large area (22 X 22 cm) will be described and ex­
perimental results for some filters of different type will be given.

The Different Methods of Thickness Control.

In order to make interference filters of different type with 
optimum properties and with transmission bands at a specified 
wavelength it is very important to be able to control the thicknesses 
of the different thin layers during evaporation, especially the 
dielectric layers.

The thickness of a silver layer (or another absorbent layer) 
can be determined with sufficient accuracy by measuring the 
intensity of light transmitted through one or more test plates by 
means of a photocell. The thickness of the silver layers should 
only be determined with an accuracy better than about 4 per cent. 
Measurement of the thickness of a dielectric layer deposited on 
a glass plate or on a silver layer is much more difficult and 
should for interference filters be determined with an accuracy 
better than 0.5 per cent.

1*
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In 1949 Greenland and Billington [1] indicated an inge­
nious method for controlling the thickness of the dielectric layer 
/-2m by production of a Fabry-Perot filter M L^mM.

By cementing a prism on to the back of the filter blank total 
reflection is obtained at the lower boundary of the dielectric 
layer, and the silver-dielectric layers in this way act as a reflection 
interference filter at oblique incidence (fig. 1, page 5). As we 
have R = 1 at the bottom of the filter, the condition ci R = 1 
([A] 3,22) is nearly satisfied for the s-component and a sharp 
minimum (“absorption line”) will appear in a spectroscope. The 
position of this minimum is determined by the thickness of the 
dielectric layer. The relation between 2^ and (the position 
of the transmission band at normal incidence) can either be 
determined experimentally (as done by Greenland [1]) or it 
can, in principle, be calculated by means of a procedure analogous 
to [A] pages 39—42.

This spectroscopic method of control is independent of optical 
properties or coatings on the “windows” in the vacuum chamber 
and can be used in the case of a glass bell jar. The measurement 
of the optical thickness nd by this method will depend upon n, 
as will be shown below.

Dufour [2 ] has controlled the thickness of dielectric layers 
by intensity measurements of monochromatic light reflected from 
test plates at normal incidence. This method, which has been 
improved by Jacquinot and Giacomo [3], has especially been 
used in the making of all-dielectric interference filters ([A] §7). At 
least two test plates are used, one for the low- and the other for 
the high-index material (see p. 36). This method depends upon 
coatings on the “windows”, but in theory the measurement of 
nd is independent of n.

To make filters of a large area the filter blank has to be rotated 
during evaporation, but rotation makes it necessary to place test 
plates far away from the filter blank, and hence it is of importance 
to find methods which avoid test plates, so that all the thickness 
measurements of the dielectric layers are carried out on the filter 
blank itself.

Such a method of control, which has proved valuable, con­
sists in polarimetric measurements of the phase difference
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A = ôp — (5S and tg y> = — in reflected monochromatic light at 
\ Qs /

an oblique angle of incidence (e. g. 75°) [4]. This method of 
control is particularly well suited for production of filters with 
two, three, or four silver layers (treated in [A] § 3—5); but it can

Fig. 1. Greenland’s method of thickness control.
The silver-dielectric layers act as a reflection interference filter and the narrow 

absorption band is observed in a spectroscope during evaporation.

Fig. 2. Polarimetric method of thickness control.
Plane-polarized light (with azimuth about 45°) is reflected from the filter layers 
and the light (which is elliptically polarized after reflection) is analyzed during 

evaporation.

also be used for control of all-dielectric filters and for thickness con­
trol of reflection interference filters of the Hadley-Dennison type.

This method requires two plane windows placed in oblique 
tubes in the vacuum chamber perpendicularly to the pencil of rays. 
The method is independent of coatings on the windows, but on 
the other hand the windows must not be biréfringent. Similar to 
Greenland’s method the measurement of nd is also here de­
pendent upon n.
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Already Drude [5] developed formulae which enabled him, 
from measurements of A (and ip) at oblique incidence, to determine 
the thickness of very thin dielectric layers (less than 50 Å) on 
a metal surface. Many years later Vasicek [6] used the same 
method to determine n and d of thin dielectric layers on a glass 
base. Rothen [7] and Rothen and Hanson [8] have used the 
same method for measurement of dielectric layers as thick as 
1—8 Z deposited on a polished steel surface. From their calcula­
tions it appeared that the same method could be adapted to 
control of the thickness of the dielectric layer Lzm by production 
of Fabry-Perot interference filters M LzmM. This assumption 
has been confirmed in recent years in practice in this laboratory 
[4] and [9].

§ 1. Theory of the Polarimetric Method for Thickness 
Control.

(Calculation of A and ip)
The problem is:

The Fresnel factor rm = for a system of m thin
layers bounded to vacuum (or air) (fig. 3) is known. To this 
system is added one more layer consisting of material m + 1

Fig. 3.

Fig. 4.
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(fig. 4), and then rm + i = Qm + i-elôm + 1 for the new system 
has to be determined.

When rm + 1 is the Fresnel coefficient ([A] 1, 2—3) at the 
boundary between vacuum and material m + 1 (fig. 5), the 
Fresnel factor r” = o''n-bi reflection from the system of in

layers with material in + 1 in front (infinite thickness) (fig. 6) is 
determined from ([A] 2, 7) when xm — 0 is introduced. We
obtain

— rm + l + Qm’elÔfn

1 ' ifi ’1 — rm + 1-Qm-e10^
(h 1)

and again from ([A] 2, 7) we finally get: 

rm + l = Qm + l-e'åm + 1

with

+ 1
r!' . p^m ^xm + 1

1 -4- p . . • o ‘ ^Xm + 1x I 2 m 4-1 " m c

_ 360 9
Xm + 1 — —— ‘ 2 dm +1 ' H-m + 1 ' COS %m + l

/o

(1, 2)

(t 3)

for the system of in + 1 layers bounded to vacuum (or air) 
(fig. 4). 2o is the wavelength of the incident plane-polarized light, 
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which after reflection from the system of thin layers becomes 
elliptically polarized.

s and p components should be treated separately. The layer 
m + 1 added may be absorbent or not; if absorbent also r^ + i 
and æm+i will be complex numbers. The layer m + 1 may also 
be biréfringent, in this case x^+1 is different from x^+1.

The calculation of the observable quantities A = ôp — <5sandy 

tg ip = — can in all cases be carried out direct from the re- 
' Qs/
currence formulae (1, 1—3) by means of Rybner’s tables [10], 
when the Fresnel coefficients ([A] §1) have first been calculated. 
If the layer m + 1 is absorbent (e. g. a silver layer) this procedure 
will be most convenient. However, if the layer m + 1 is not absorb­
ent (i. e. a dielectric layer) other procedures may be followed.

In this case (1, 1—2) can be written:

= 1 An4-l)’O Qm)
1 _|_ i Qm) 2 ■ rm • om • cos ôm

(h 4)

______________ ( 1 — rm+ 1) • ( 1 — Qm)_______  
1 “h (^m 4-1 ' Qm) d- 2 rm _|_ 2 ‘ Qm 'COS (<5W æm + 1)

(1, 5)

Qm ' (1 ■ — rm _|_ j) • sin ôm

— + + Qm) + Qm'(1 + bn4-l)‘cos Ôm
(1, 6)

tg ôm + i Qm (i + 1 ) ‘ sin (Ôm Xm + 1)
(1. 7)

and the derivative -------- m_+1 can -n case pg expressed by 
('Em 4- 1?

_ Ô (Ôm + 1)
d (%m +1)

+ (Qm' ( 1 — An 4-1) • Sin (ô'm ~ Xm + l))2

(1, 8)

Another method to calculate A (and ip) as a function of nd 
when m -fl is a dielectric layer, consists in inversion of complex
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1. 2.

Fig. 7.
1. The complex number (pw,^m) is plotted (point B, clockwise return).

p' (1_ ß 2)
2. The centre C = ------- —----------- —------------ is calculated, and a circle is

l + 42+l-24 + 1.e/K.cos(5m
drawn through B with Cm as centre.

3. The point B is inverted to point D (with (r'm + x, 0) as inversion centre).
4. The angle xm + 1 is plotted (counterclockwise return).
5. The point E is inverted to point F, which is equal to (Qm + t, ôm , x).
6. If to the system is added a new dielectric layer m. + 2 with another index of 
refraction um + 2, a new centre + 1 calculated, a new circle is drawn through 
F (broken line), and the procedure is repeated.
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thickness t = 350 Å. The numbers on the s and the p circles correspond to the 
same values of x with ten degrees’ interval (e. g. 13 corresponds to x = 130°). 
The corresponding (A, nd) curve is shown in fig. 28 p. 31, unbroken line. In the 

same way also = tg ip can be derived from fig. 8. Angle of incidence <p = 75°.

numbers. The different steps in this graphical method (which 
enable us direct to determine + <5m + i) from (çm, ômy) are
shown in fig. 7 (1—6). The procedure employed in fig. 7 is a 
modification of a method indicated by Cotton [11].

In fig. 8 is shown the graphical procedure in the calculation of 
a (A, x) curve for a fluoride layer with a silver layer at the bottom. 
When a polar coordinathograph for plotting complex numbers
(o, ô) is used in the graphical method, the deviations in A from 

1°the exactly calculated values will be less than - ,which will be 
sufficiently accurate in the case ol‘ (p = 75°.
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All the (A, nd) curves shown in the following figures have 
been calculated by means of this convenient graphical method. 
(Ao, yo) for the bottom silver layers are calculated direct from 
(1, 1—2) by means of Rybner’s tables [10].

§ 2. The Accuracy and General Trend of the Polarimetric 
Method.

In fig. 9 is shown (A, nd) curves corresponding to a fluoride 
layer with n — 1.28 (quickly evaporated MgFï) deposited upon

a silver layer with t = 400 Å. The three curves correspond to 
different angles of incidence (p — 45°, 60° and 75°.

A is a periodic function of x with 360° as the period or as a 
Aofunction of nd with the period------ , where Ao is the wave-

2 cos %
length of the polarimeter light and no birefringence is assumed. 

dA
The steepness ——- af the curves increases rapidly with 

o (nd)
increasing angle of incidence.
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If n changes its value during evaporation from n to n + Z1 n, 
this gives rise to an uncertainty in the determination of nd and 
thus also to a change in the position of the transmission band Ai 
for the filter we wish to make. If the evaporation of the dielectric 
material is stopped at a value of A corresponding closely to one 
whole period (A ~ Ao), the uncertainty in nd can be determined 
from the derivative of

We get

d (nd) A<rsin2* -An
2 n ■ cos3 / (2, 1)

and as one whole period on the (A, nd) curve corresponds to an 
interference filter of the second order, the uncertainty Zl Ax, in 
the position of the transmission band Ax, will have the same value 
as zl (nd). In Table 1 J Ax is calculated correspondingly to Ao = 
5460 Å when n decreases to n — 0.01 during the total period of 
evaporation. The corresponding uncertainty of Greenland’s 
method of control is added in the table. If a change in birefringence 
np — ns takes place during evaporation, this will give an additional 
uncertainty for the polarimetric method in contrast to Green­
land’s method, where only the s component is used. In column 4

—is given for the steep part of the curves in the neighbourhood 
d (nd)
of x = 360° measured in degrees per Angstrom and in column 5,

Table 1. (ZlAx corresponds to A n = 0.01).

COS /

(n = 1.28) (n = 1.28)

dA
d (nd)

(n = 1.28)

/tAx

(n = 2.36)

Greenland's
method : 0.54500 92.6 Å 3.4 Å

Polarimetric 
method:

<p = 75°
60°
45°

0.65615
0.73637
0.83356

43.3 -
24.6 —
11.3 -

0.090 degree / Å
0.045
0.022

2.6 —
2.0 —
1.2 —
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d Ai is calculated for a high-index layer n = 2.36 (Zz?S). Zl n =
0.01 will in this case give a negligible change in Ai.

In what follows <p = 75° is employed; however, when a 
photoelectric method is used, (p — 60° would give sufficient 
accuracy.

Fig. 10.

“bottom” layer. Fig. 10 shows that even if a dielectric material 
was available with n as low as 1.15, the polarimetric method of 
thickness control would give sufficient accuracy. From fig. 10 
we are further able to calculate the uncertainty of nd caused by 
a change in n for all values of nd.

Fig. 10 shows that as n increases Amin will decrease and 
Amax increase. Amax — Amin (which can be determined during 
evaporation and which, as calculations show, is independent of 
small changes in (Ao, tpo) for the silver layer) determine n of the 
dielectric layer. If desired, the values of Amax and Amin can be 
exactly calculated by means of (1, 8) (nsd is determined in such 

a way that —---------= 0). In Table 2 a few calculations
d(nsd) d(nsd)

of this type are added, (p = 75° v — i x = 0.1 — i 3.6 and 
/ = 400 Å for the silver layer.
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Table 2.

(no birefringence is assumed)

n Amin Amax Amax Amin

1.25 65°71 243°28 177°57
1.30 63.97 250.76 186.79
1.35 62.60 256.61 194.01
1.40 61 .46 261 .27 199.81

Table 3. 92 = 75°.

n COS £ — rs — rp

1.15 0.54269 0.41371 0.29161

1.20 .59336 .46682 .31283
1.21 .60227 .47584 .31570
1.22 .61086 .48446 .31846
1.23 .61910 .49266 .32082
1.24 .62706 .50052 .32291
1.25 .63472 .50805 .32476
1.26 .64211 .51526 .32637
1.27 .64924 .52218 .32777
1.28 .65615 .52886 .32899
1.29 .66282 .53527 .33003
1.30 .66927 .54145 .33089
1.31 .67551 .54741 .33164
1.32 .68155 .55317 .33221
1.33 .68742 .55874 .33266
1.34 .69310 .56412 .33299
1.35 .69861 .56932 .33320
1.36 .70396 .57438 .33331
1.37 .70915 .57928 .33332
1.38 .71420 .58403 .33325
1.39 .71910 .58864 .33307
1.40 .72386 .59312 .33281
1.518 .77132 .63788 .32514 (glass)
2.36 .91240 .78540 .19799 (ZnS)

In Table 3 (rs, rp) are calculated for <p = 75° and different 
values of n (from ([A] 1, 1—3)).

For values of nd, where A is near a minimum or a maximum, 
it would be impossible to determine nd with sufficient accuracy.
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However, the wavelength Zo of the polarimeter light can be changed 
which alters the position of minimum and maximum on the 
(A, nd) curve, and in this way all values of nd can be controlled 
with sufficient accuracy on a steep part of a (A, nd) curve. 
(Figs. 27—28, p. 31).

Before the detailed procedure is given which enables us to 
calculate a (A, nd) curve which best lits to the experimental 
results, it should be emphasized that nd for filters M LzmM of the 
second (or higher orders) (m > 2) can be determined in the 
simplest manner when the wavelength Âo for the polarimeter 
light is chosen in such a way that x is near 360°, i. e. Zo = 
2 dn- cos / (or Âo = dn-cos /) (for <p = 75° fa = 5050 Å corre­
sponds to Âo = 5461 Å).

In this case the nd determination will be independent of Ao 
(the value of A when the evaporation of the dielectric layer is 
started), and without any knowledge of the theory the polarimetric 
method of control can be used empirically also for compound 
filters with three or four silver layers (and two or three dielectric 
layers) and even with a glass bell jar (free from strains) as vacuum 
chamber.

Zo can be altered in practice by means of interference filters 
in connection with a tungsten band-lamp.

As a (A, nd) curve with a silver layer as bottom layer only 
shows a small dependence upon t (for t > 350 Å), an empirical 
(A, nd) curve can be determined and also filters of the first 
order controlled.

However, theoretical calculations of (A, nd) curves or (A, Åm) 
curves, which best fit the experimental results, will be of great 
value for determining the physical properties of evaporated 
thin films and for more complicated filters, such as M L'H2L'M, 
or at all-dielectric filters empirical determination of the (A, nd) 
curve would be much too complicated.

This procedure is more complicated, as previously assumed, 
because of the following important experimental facts :

1. x for a silver layer of thickness t 400—500 Å is different
from x for an opaque silver layer.
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Table 4. d = àp — ôs. Table 5. tgy = Qplgs-

0.0 0.1 0.2 0.1 0.2

2.0 63.28 63.29 63.33 2.0 0.9644 0.9301
2.1 65.34 65.35 65.40 2.1 .9649 .9310
2.2 67.37 67.39 67.43 2.2 .9654 .9320
2.3 69.37 69.38 69.44 2.3 .9660 .9331
2.4 71.33 71.35 71.40 2.4 .9666 .9343
2.5 73.26 73.28 73.33 2.5 .9672 .9355
2.6 75.15 75.17 75.23 2.6 .9679 .9367
2.7 77.00 77.02 77.08 2.7 .9685 .9380
2.8 78.82 78.84 78.89 2.8 .9692 .9393
2.9 80.59 80.61 80.67 2.9 .9698 .9406
3.0 82.33 82.34 82.40 3.0 .9705 .9419
3.1 84.02 84.04 84.10 3.1 .9712 .9432
3.2 85.68 85.70 85.76 3.2 .9718 .9445
3.3 87.29 87.31 87.37 3.3 .9725 .9458
3.4 88.87 88.89 88.95 3.4 .9732 .9471
3.5 90.41 90.43 90.49 3.5 .9738 .9483
3.6 91.91 91.93 91.99 3.6 .9744 .9495
3.7 93.38 93.40 93.45 3.7 .9751 .9507
3.8 94.81 94.83 94.88 3.8 .9757 .9519
3.9 96.20 96.22 96.27 3.9 .9763 .9531
4.0 97.56 97.58 97.63 4.0 .9768 .9543
4.1 98.89 98.90 98.95 4.1 .9774 .9554
4.2 100.18 100.19 100.24 4.2 .9780 .9565
4.3 101.44 101.45 101.50 4.3 .9786 .9576
4.4 102.66 102.68 102.73 4.4 .9791 .9586
4.5 103.86 103.88 103.92 4.5 .9796 .9596
4.6 105.03 105.04 105.09 4.6 .9801 .9606
4.7 106.17 106.18 106.22 4.7 .9806 .9616
4.8 107.28 107.29 107.33 4.8 .9811 .9625
4.9 108.36 108.37 108.41 4.9 .9815 .9634
5.0 109.41 109.42 109.46 5.0 .9820 .9643

2. (n measured in the vacuum container) for a low index 
layer is different from n(A) (n measured in air) when the material 
is quickly evaporated. (For MgF2 we have n(r) = 1.28 and — 
1.365).

3. A fluoride layer quickly evaporated shows a small birefrin­
gence

Up) > (for MgF2 np — ns~ 0.005).

For ZnS and other high index layers we have n<v> = n^.
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Table 6. os. Table 7. 180 — ôs (<p = 15°).

0.1 0.2 0.0 0.1 0.2

2.0 0.99073 0.98160 2.0 13.29 13.27 13.22
2.1 .99135 .98283 2.1 12.78 12.76 12.71
2.2 .99193 .98396 2.2 12.30 12.28 12.23
2.3 .99245 .98499 2.3 11.85 11.83 11.79
2.4 .99293 .98594 2.4 11.43 11.41 11.37
2.5 .99337 .98681 2.5 11.03 11.02 10.98
2.6 .99377 .98761 2.6 10.66 10.65 10.62
2.7 .99414 .98835 2.7 10.31 10.30 10.27
2.8 .99448 .98903 2.8 9.99 9.98 9.95
2.9 .99480 .98965 2.9 9.68 9.67 9.64
3.0 .99509 .99022 3.0 9.39 9.38 9.36
3.1 .99535 .99075 3.1 9.12 9.11 9.08
3.2 .99560 .99124 3.2 8.86 8.85 8.83
3.3 .99583 .99170 3.3 8.61 8.60 8.58
3.4 .99605 .99212 3.4 8.38 8.37 8.35
3.5 .99624 .99251 3.5 8.16 8.15 8.13
3.6 .99642 .99288 3.6 7.94 7.94 7.92
3.7 .99659 .99322 3.7 7.74 7.74 7.72
3.8 .99675 .99354 3.8 7.55 7.55 7.54
3.9 .99691 .99383 3.9 7.37 7.37 7.36
4.0 .99705 .99411 4.0 7.20 7.19 7.18
4.1 .99718 .99436 4.1 7.03 7.03 7.02
4.2 .99730 .99461 4.2 6.87 6.87 6.86
4.3 .99741 .99484 4.3 7.72 6.72 6.71
4.4 .99752 .99505 4.4 6.58 6.57 6.56
4.5 .99762 .99525 4.5 6.44 6.43 6.43
4.6 .99773 .99545 4.6 6.30 6.30 6.29
4.7 .99780 .99563 4.7 6.17 6.17 6.16
4.8 .99789 .99579 4.8 6.05 6.05 6.04
4.9 .99797 .99595 4.9 5.93 5.93 5.92
5.0 .99805 .99611 5.0 5.82 5.82 5.81

§ 3. Determination of (^s, <5s) for a Silver Layer.

To be able to calculate a (A, nd) curve it is necessary to know 
not only (Ao, y>o) | Ao = — d.s ; tg ip0 = —j, but also (qs, ös)

for the silver layer first evaporated. ,
The first step will be to calculate tables of | A, — j and (£s, <5S)

\ Qs 1
Dan. Mat. Fys. Medd. 30, no.6. 2
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Fig. 12.
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2*
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Fig. 15.
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Fig. 17.
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for an opaque silver layer at tp — 75° as a function of v — i x. 
The results of such calculations (carried out by means of ([A] 
1, 12—13) are given in Tables 4—7.

The next step will be to calculate the same quantities for 
different thicknesses t of a silver layer and also for different 
values of v— ix by means of (1, 1—3). This has been done only 
for values of x in the neighbourhood of Âo = 5461 Å, the re­
sults being shown in the figs. 11 —14 for v = 0.1 and in the figs. 
1 5—18 for v = 0.2 .

Now the most obvious method woidd be first to determine 
v — i x by means of Tables 4—5 from measurements of (Ao, y>o) 
for an opaque silver layer. However, experiments show that 
when the thickness t of a silver layer is increased, A reaches a 
maximum for some definite thickness to — 450 A and then 
decreases, which according to fig. 11 and fig. 15 means that x 
reaches a maximum for t < to.

As only two observable quantities (Ao, y»o) are available, we 
may assume a definite value for v ; when this is done, x and t 
can be determined from figs. 11—12 and figs. 15—16. (As a 
first approximation v determined for an opaque silver layer 
can be used). When x and t are determined for the silver layer, 
(Qs, às) can be determined from figs. 13—14 and figs. 17—18. 
It should be emphasized that (^>5, d5) in contrast to (Qp, åp) only 
shows a small dependence upon v and x.

As an example of the above procedure the following experi­
mental results should be given in Table 8.

The measurements are carried out just aller evaporation of 
the layer. The thickness of a silver layer is controlled by trans­
mission measurements at test plates (placed perpendicularly 
above the evaporation source for silver). A silver layer of thick­
ness /' = 200—250 Å is evaporated in one step (only one test 
plate used) but a silver layer of thickness t'' = 400—500 Å is 
evaporated in two or three steps (two or three test plates are used 
placed in position in succession). In this way a definite value 

t"of— can be obtained (bv means of a photocell). When the current 
/'

from the photocell is the same for the test plates, we should in 
theory have t-2 = 2 ti; t3 = 3 ti, etc. in Table 8.

From the measurements it seems as if v is near 0.1 ; however, 
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not until measurements of /max and W2 for the finished filter 
have been made, (after the filter has been removed from the 
vacuum chamber) is it possible to determine v.

x depends upon the speed of evaporation, but seems to be 
independent of the pressure when this is below 10~4 mm //p.

Table 8. (The transmission through each of the test plates is 
the same).

Te
stp

la
te

 
no

. d V»
v = 0.1 v = 0.2

t X 0s <5S / X <5S

1 82°80 37?1 210 Å 3.46 0.955 169.54 236 Å 3.32 0.954 169.74
2 90.53 42.5 380 3.60 0.989 171.60 423 3.55 0.987 171.70
3 90.40 43.6 504 3.53 0.993 171.74
4 90.00 44.0 650 3.48 0.995 171.75
5 88.74 -— 3.40
6 87.80 — 3.33
7 87.10 — 3.29
8 86.40 — 3.24

For a wavelength Zo near 5461 Å figs. 11—18 can 
2' 

if the /-scales are transformed to t' = /•——.
5461

still be used

8 4. Determination of n and n .° s p

When a Fabry-Perot filter of higher order (e. g. M L10M) 
is produced, Amin and Amax for several periods of the A curve 
can be measured during evaporation.

Experiments for cryolite and MgFz both quickly evaporated 
now show that small deviations from periodicity are present. 
W e have Amin1 > Amin2 Amin3 • • • and Amax, > Amax, 
Amax3 . • which indicates that the evaporated layer is bi­
réfringent and that np > ns. The film acts as a uniaxial crystal 
with its optic axis normal to the film. When no is the ordinary 
and ne the extraordinary index we have according to Born [12 
or Billings [13]:

and
no = ns (4, 1)
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 np • sin xpne — —- _
rip

ns

(%p is determined by n^sin/p = sin 99).
When birefringence is present, (ôp, nsd) and (ôs, nsd) curves 

must first be constructed separately, and next A (nsd) can be 
calculated from these curves.

This procedure is illustrated in fig. 19 calculated for ns = 1.28 
and np = 1.29. By means of the p-scale (of n8d) above and the 
s-scale (of nsd) below in fig. 19 the corresponding (A, nsd) curve 
is constructed in fig. 20 (for nsd < 8000 Å unbroken line and for 
8000 Å < nsd < 16000 Å broken line).

As rp only varies slowly with n (Table 3), fig. 19 can still be 
used for another value of np — np if the p scale (above) is trans­
formed to

r /

(4,3)
ttp-cos/p

COS2/p

For we have np — ns — 0.005. (ne —no — 0.009).
From measurements of AmiDj, Amin2 . . . and AmaX1, AraaXi . . . 

during evaporation it should be possible to determine and 
np} (y means measured in vacuum), and from these values and 

from Ao, —I and (@S,5S) for the silver layer the (A, nsd) curve
\ Qs'

can be constructed.
As mentioned above, a great change in n for MgFz takes place 

when air (and H2O) is admitted to the vacuum chamber and this 
change in n from n(r) (= n(gr)) to n(A} must be taken into account 
when we desire to make an interference filter with transmission 
band at à\a'> (at normal incidence).

We have ([A] 3, 8)

= 2dnw + Z(l%\ nw). (4, 4)

(Z (4X), n(A)) can be determined by means of ([A] fig. 8)), and 
the evaporation has to be stopped at a value of A corresponding to

!?>)). (4. 5)
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With the apparatus now in use can be measured with a 
spectroscope (at normal incidence) before air (and HaO) is 
admitted to the vacuum chamber.

We have
= 2n(f)-d + Z(ti£>, n(8v)). (4, 6)

Z (2[®\ n^) can approximately be calculated from ([Al 
fig. 8) when the A-scale is transformed. If x (A) has the value 
adapted in [A], the observed value of should be equal to 
the value calculated from (4, 6).

From the observed values of and 2,^ it is possible to de­
termine from (4, 4) and (4, 6). As Z(î,) ~ Z(A\ we approxi­
mately obtain:

i. e. the shift in wavelength of the transmission band towards 
red is proportional to the wavelength especially for filters of 
higher orders m. For MgFz we have very nearly = 1.28 and 
a shift of 2.^— = 400 Å is observed when = 6560 Å.
From (4, 7) we then get n(j4^ = 1.365.

Especially for filters of smaller area (5 X 5 cm) a cover 
glass is cemented upon the thin filter layers for protection. The 
cement most commonly used is a balsam or better a plastic 
dissolved in xylene or toluene. If porosities are present in the 
fluoride layer, the cement will fill the pores and a further shift 
from 2l\a>> to towards the red will result. For cryolite quickly 
evaporated this shift turns out to be as great as — 2^ _ù_ 350 Å 
(â[>* 4) = 6560 Å), but here 2.%^— 2^ = 100 Å only; however, 
these shifts are rather unpredictable. For MgFz the shift 2^ —2^ 
is only 50—150 A, but unfortunately this shift seems to be more 
dependent upon the conditions of evaporation than n(1) and 
A^4)— ho. So far experiments seem to show that n(r) is only 
slightly dependent upon pressure, when this is lower than 10— 4 mm 
Hg, but is dependent upon the temperature of the crucible 
(“molybdenum boat’’). The higher the temperature the higher 
n(r) (or the higher n^r) — n[r)) becomes and — 2(A) becomes 
smaller, but Z[;4)— 2^ will be nearly the same. Recent investiga­
tions seem to indicate that this dependence upon the temperature 
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of the crucible is partly due to impurities in the MgFz used and 
all the above properties, which are so important when making 
interference filters, require much more experimental investiga­
tion with uncontaminated MgFz powder.

An alternative determination of or (n^, n^) can 
according to ([A] p. 39—45) be made from observation of (2^, Å^) 
at an oblique angle of incidence.

In fig. 21 and fig. 22 (dp, nsd) and (ds, nsd) curves are shown 
which are calculated for ns = 1.28, np — 1.285 and Ao = 5460 A 
(v— i x — 0.1 —z’ 3.5). The solid curves correspond to t = 500 Å 
and the dotted curves to t = 200 Å for the basic silver layer.

Fig. 23 and fig. 24 show the ratios between the s and p circles 
employed at the construction of ligs. 21—22.

Figs. 25—26 are quite analogous to figs. 21—22, but calculated 
for z() = 7400 Å (v— i x = 0.1 — i 5.0). When a red-infrared 
sensitive photocell is used as reciever in the polarimeter, the 
application of Xo for this spectral region has many advantages 
because of the optimum conditions for silver layers in this region.

Small changes in the constants from ns, np, Ao to ns, np, Ao 
can be compensated for in the figs. 21—22 and 25—26 by trans­

forming the nsd scales to (nsd)' — nsd-——(p compo- 
np-Å0- cos %p 

nent) and analogous for the s component.
In fig. 27 the (A, nsd) curves are constructed from figs. 21—22 

(solid curve) and from figs. 25—26 (dotted curve) in the case 
of t = 500 Å A^1} and A^ scales calculated from (4, 4—6) and 
([A] fig. 8) are added. However, it should be emphasized that 
fig. 27 may only be regarded as a first approximation. Experi­
ments with uncontaminated MgFz powder will be continued for a 
more accurate determination of np and ns.

From fig. 27 it is apparent that all thicknesses nd up to 6000.4 
can be controlled with great accuracy (better than 10 .4), when 
the conditions of the evaporation process are constant).

In fig. 28 two (A, nd) curves have been constructed for np — ns 
= 1.29. Ao = 5460 Å for the solid line curve (v — ix — 0.1 —z 3.5) 
and Ao = 6560 Å for the dotted line curve (v— ix = 0.1 —z‘4.3) 
and t = 350 Å for both curves. For a filter of the second order 
we obtain for a definite nsd, a value of A (for Ao = 5460 Å) 
in fig. 28 which is near the value for A we obtain from fig. 27,
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Fig. 23. Proportion between s and p circles for t = 200 Å 0g = (ps, <5g) and 

°p = ^p’ôp^ for the silver layer-

Fig. 24. Proportion between the s- and the p-circle when t = 500 Å.
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Fig. 26.
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i. e. if it is assumed that there is no birefringence and n is de­
termined from measurement of we obtain too high a value.

Figs. 27-—28 further shows that when three different values 
of Zo are available, also values of ns-d higher than 6000 Å can 
be controlled with great accuracy.

At the control of nd only A is used. However, also ip is observed

0 90‘ 130' 270' 360'

\-5460/ n-1.26 ^=75
r =

A'. 200/
B' 350/
C- 500/

c______—""

/ a

A/'

X —

I_________ i_________ i ,_________ i_________ i_________ i_________ i_________ i I
0 1000 2000 3000 n(j 4000/

o
Fig. 29. ip calculated for different thicknesses t of the basic silver layer, tg ip =zP.

Qs

by analyzing the elliptically polarized light reflected from the 
silver-dielectric layers (fig. 2). Fig. 29 shows (ip, x) or (y>, nd) 
curves all calculated for n = 1.28 and for different thicknesses t 
of the basic silver layer. As opposed to A, ip shows a strong 
dependence upon t and v for the basic silver layer. ^max — V^min 
can be used for a determination of t if v is known and at t = oc 
be used for a determination of v, which is independent of small 
errors in the polarimeter adjustment.
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§ 5. Control of the Dielectric Layers for Compound Filters 
Af'£2wAf"L2znM' and M'L2rnM"L2PM"L2tnM'.

For these types of filters the polarimetric method lor control 
will be especially well suited because all the measurements take 
place in reflected light and on the filter base itself and because 
reflection from AI, Al or from the combinations Al L>2m Al" and 
Al' L2 7zidf h^pAI (as basic lasers foi the dielectric layers) iesult 
in about the same value for A and d5 (if Ao not corresponds to 
a transmission band for the basic interference filter at cp = 75°) 
and the (A, nd) curves above (for t = 500 Å) can still be used.

As briefly mentioned above the most direct method of control, 
for a filter of the second or higher order will be to chose the 
wavelength of the polarimeter light Ao in such a way that the 
evaporation has to be stopped at a value of A in the neigh­
bourhood of Ao corresponding to one or more total periods of the 
(A, nd) curve (Ao = 2 dn- cos % or Ao = dn-cos %).

Below a table is added which gives Ao for fdters of the second 
order (1 period) and of the third order (2 periods) for different 
values of A(J).

Table 9.

Ao Ao
M"L6M"

4000 Å 4060 Å
4500 4730
5000 5400 4270 Å
5500 6060 4760
6000 6710 5240
6560 7430 5780
7100 8100 6290
7680 8840 6840

In this case the control is independent of the composition of the 
basic system of layers. In the case where this system consists of 
a filter Af L^M", as shown in fig. 30 A, (A, ip) of light reflected 
from A will be the same as (A, ip) for light reflected from a silver 
layer with thickness /' + t'' (fig. 30 B) if v — z x is the same for 
the three silver layers.

Dan.Mat.Fys.Medd. 30, no.6. 3
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The small birefringence present acts as if n-cos / is greater 
than in reality. Table 9 is calculated in such a way that = 
6560 Å (third order) corresponds to the value of /io actually 
measured.

When we wish to make a filter M'LzmM" LzmM'' LzmM' it 
should further be noted that n{A}-d for the central layer is different 
from n(4)-d for the outer dielectric layers, as the filters M' LzmM" 
and Jf" shall have the same value for å\a\ The

Fig. 30.

...............

values to be used on the (A, nsd) curve are calculated from (4, 5). 
The differences betweens the n^d values for the central and the 
outer layers vary from about 15 Å at = 4000 Å to 115 Å 
at = 7700 Å.

§ 6. Control of the Dielectric Layers for Filters where L and 
H Layers are Added to the Silver Layers.

Also al this type of filters (the theory of which is given in 
(I A] § 6)) all the dielectric layers can be controlled on the filter 
base itself (fig. 31).

The calculation of the (A, nd) curve is carried out graphically 
by means of a polar coordinathograph (sec fig. 7).

As an example fig. 32 shows the (A, nd) curve calculated for 
the simplest filter of this type M L'HzL'M in such a way that
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peak transmission occurs at Â = 6560 Å. Here Zo = 5460 Å will 
give sufficient accuracy by control of all the dielectric layers, but 
in most cases (in the case of more complicated filters of this type)

--------- Å=6560 Å 1 C

0=1.29 ; O„=2.36 I n-1,29 |

I - 'Ag U50/
A=5460 4 J C I

= 75’ H2

1OOÖ 2000 3000 4000 5000 no/Å
Fig. 32.

the calculation has to be repeated for another value of Âo to be 
able to control all the dielectric layers with sufficient accuracy.

The control of a high-index layer is much easier than for a 
low-index layer as n# = = n(^ and because of the small
value of A (Table 1).

In fig. 32 it is assumed that nH = 2.36 = 1.29 and
n(A) = 1.37.

3*
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§ 7. Thickness Control in the Production of All-Dielectric 
Filters.

As mentioned above, the usual procedure employed for this 
tvpe of filters is measurement of the intensity R(d) in reflected 
monochromatic light at normal incidence from test plates; at least 
two test plates are used, one for the low- and the other for 
the liigh-index layers. In fig. 33 R(d) is calculated for the test 
plate with the low-index layer = 1.29, MgFï) and in fig. 34 
R(nd) for the test plate with the high-index layer (nH = 2.36, 
ZnS). By change of wavelength Ao or by measuring the difference 
Ri — Rz corresponding to two different wavelengths as indicated 
in figs. 33—34 it will be possible to control nd for all the layers 
with an accuracy of about 30 Å (if photocells and an amplifier 
are used). It should further be mentioned that Jacquinot and 
Giacomo [4] have constructed an apparatus which enables them 

, . • • dR z , . ,to measure the derivative ----  (which can be used for thickness
dA0

control with great accuracy for thicknesses where R (d) has a 
maximum or a minimum).

This rather simple test plate procedure offers good results by 
production of filters of smaller areas. [2] However, as mentioned 
above, the filter base in the case of production of filters of larger 
areas must be rotated during evaporation and the test plates 
placed perpendicularly above the evaporation source and far 
from the filter base. In this case the test-plate procedure for con­
trol would be rather uncertain, and for this reason it would be 
desirable to control all the filter layers (and especially the 3—5 
central layers) on the filter base itself. In the case of this type of 
filters this is also possible by means of the polarimetric method 
and with higher accuracy than obtained with the testplate method.

The (A, nd) and (y>, nd) curves are calculated by means of 
the graphical procedure shown in fig. 7 p. 9.

Such a construction is shown in figs. 35—36. = 1.29 and
nH = 2.36. Ao has been chosen in such a way that xH — 

A A
180 • — • cos %H is equal to 180° i. e. — = 1.096. (<p = 75°).

Ao " Ao
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Fig. 33. R (d) from a glass surface with n = 1.518 coated with a MgF2 film (<p = 0).

Fig. 34. R (nd) from a glass surface with n — 1.518 coated with a ZnS film (<p = 0).
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X n(r)
Xr = 180 ■ — • • cos Y, and when — 0.9377 we have

; n(A) n(A)'■0 nL nL

xL = 122°.62 (xH = xL = 180° for z = 2i and q> — 0).
Fig. 35 shows (gP, ôp) and fig. 36 (os, <5S) (in polar coordinates) 

for the filter DiLzDi as the layers grow simultaneously.
The numbers 1—16 on the spirals denote the values of (o, Ö), 

where the evaporation has to be interrupted and a change to the 
other dielectric material to take place. E. g. the number 8 means 
(@, 5) in reflection from the seven layers Dq = HLHLHLH 
(1 means (q , <5) for the uncoated glass plate), 9 means reflection 
from HLHLHLHL2, etc. As xH = 180°, the same construction 
can be used for the filter DsfDDs. The number 9' in figs. 35—36 
means (q, ô) corresponding to reflection from the system Ds — 
HLHLHLHL (and 10' in fig. 35 means reflection from D9; in 
fig. 36, 10' is equal to 8).

From figs. 35—36 the corresponding (A, nd) and (pip, nd)
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curves can be constructed (not given here). The positions of the 
points on the (A, nd) curve which correspond to the H and L 
layers would be still better if Ao was chosen still smaller than Ai 

Ax 6560 . __ tt r , - .e. g. — = — = 1.20. Unfortunately Zo can not be chosen
20 5461

higher than or equal to Ai, as in this case — would be too low 
f?s

to enable an accurate measurement of A.
Another procedure by polarimetric control would be to 

measure the difference A (Ao) — A (Ao) in A corresponding to 
two neighbouring wavelengths Ao and Ao (e. g. 5461 Å and 5893 Å). 
When this difference is measured with an accuracy of 5' (live 
minutes of arc) a sufficiently accurate control would be possible 
for values of nd where A has a maximum or a minimum.
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Summary.

A polarimetric method for thickness control in (he production 
of interference filters has been treated in detail.

Plane-polarized light with wavelength Xo is reflected from the 
filter layers at an oblique angle of incidence (99 = 75°) and thus 
becomes elliptically polarized. Ao is chosen in such a way that 
measurement of A = ôp — ôs for the elliptically polarized light 
determines the thickness of a dielectric layer with an accuracy 
better than 10 A (when conditions during the evaporation 
process are constant).

This method of control, which follows the growth of the 
dielectric layer on the filter base itself, can be applied to all types 
of interference filters (also reflection interference filters) and is 
especially well suited for control of the dielectric layers for 
filters of the types ML2mM, M'L2m M"L2mM' and 
M' L2mM" L2pM" L2mM'.

A (A, nd) curve for a filter M L2mM can be constructed from 
measurements of (Ao, yo) for (he silver layer M first evaporated 
and from measurements of Amax and Amin during evaporation ; 
and the value of A at which the evaporation is to be stopped 
can be calculated corresponding to a definite wavelength for the 
transmission band Am of the filter.

A small birefringence (np — ns 2^. 0.005) is present for an 
evaporated fluoride layer (cryolite or MgF2) and the index of 
refraction for rapidly evaporated MgF2 is much lower in vacuum 
(n(1) = 1.28) than in air (n(/1) = 1.365). Furthermore measure­
ments of (Ao, yd) for silver layers show that x for a silver layer of 
the thickness employed for interference filters is different from x 
for an opaque silver layer.

The experiments will be continued in order to obtain more 
refined information about np (A) and ns (A) (in vacuum and air) 
for thin evaporated MgF2 films.
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It is shown that the appropriate mathematical formalism of the field theoretical 
model recently proposed by T. D. Lee must use an indefinite metric to describe 
the norm of the state vector in the Hilbert space. The appearance of the indefinite 
metric is intimately connected with a new state of the V-particle having an energy 
that is below the mass of the “normal” V-particle. It is further shown that the 
S-matrix for this model is not unitary and that the probability for an incoming 
V-particle in the normal state and a boson, to make a transition to an outgoing 
V-particle in the new state and another boson, must be negative if the sum of 
all transition probabilities for the incoming state mentioned shall add up to one.

Introduction.

In a recent paper1), T. D. Lee has suggested a very interesting 
model of a renormalizable field theory. This model is simple 

enough to allow a more or less explicit solution, but compli­
cated enough to contain many features characteristic of more 
realistic theories. It uses not only a renormalization of the mass 
of one kind of particles involved, but also a renormalization 
of the coupling constant g describing the interaction between the 
particles. In the explicit solution found by Lee, the ratio between 
the square of the renormalized coupling constant g and the square 
of the unrenormalized coupling constant g0 is given by an ex­
pression of the form

C = l-A-^, (1)
.7 0

where A is a divergent integral. The ratio (1) is thus equal to 
— oo. This is a very remarkable result, as according to very 
general principles2), this ratio should lie between one and zero. It 
is the aim of the present note to investigate the mathematical 
origin of the result (1) and to show that the violation of general 
principles implied by (1) also has observable consequences 
insofar as the S-matrix of the theory turns out not to be unitary.

1*



4 Nr. 7

To avoid the manipulation of divergent integrals we introduce a 
cut-oil’ factor in the interaction. It will then appear that abnormal 
values of the ratio (1) are also obtained for a finite value of the 
cut-off and are not immediately connected with the infinities in 
the original formulation. To make our discussion reasonably 
self-contained we start with a survey of the foundations of the 
Lee model and with an outline of the way in which the renor­
malizations have to be performed in this case.

I. Renormalization of the Lee Model.

Let us consider a system with three different kinds of par­
ticles which, following Lee, we call V-particles, TV-particles, and 
0-particles. To each kind of particles corresponds a field that will 
be denoted by y’y, W> and a, respectively. The system is governed 
by the following unrenormalized Hamiltonian:

H = H0 + Hint, (2)

h0 = X Ev (?)y>v (?) y’v (p) + £ en Cp)vn(p) vn (p)

p - p (3)+ 2? co (?) a*  (?) a (?),
k

Hint = — 7= Y (Vv (?) W (p) a (k) + a*  (?) (p ) xpv (p)). (4)
k V  P 2 co 

p = p’ + k

The operators in (3) and (4) can be thought of as being written 
in p-space and in a Schrôdinger representation. The model does 
not have invariance with respect to the Lorentz group and it will 
not be necessary to use the more sophisticated representations of 
relativistic field theories. The energies E'y(p), EN(p), and co(?) 
are, in principle, arbitrary functions of the momenta involved 
and the theory can be treated for any form of these functions. 
However, for our purpose, it will be sufficient to consider the 
following special case,

(5)Ev(p) ~ en(p) = In (independent of p), 

co (?) = |/?2 + ?2- (6)
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In particular, Eq. (5) will simplify the formal expressions to some 
extent without interfering with the interesting features of the 
result. If one wishes, this choice of the energies as functions of 
the momenta can be thought of as giving a model for the inter­
action of very heavy V- and AT-particles (with equal masses) with 
light, relativistic 0-particles. The function /(co) in (4) is the 
cut-off function mentioned earlier and is introduced to make the 
sums, appearing later, convergent. The quantity V is the volume 
of periodicity.

The field operators obey the following commutation and anti­
commutation relations :

{v’v(p), W(p')/ = {v4v(p)> V'n(p)} = (7)

{w(?)> w(p)} = {w(p)> V’jv(p)} ... ..............  (8)

[a®. a*®)]  = ôk~k>, (9)

[«(!), V’v(p)] = [«(£)> w(p)J ... .............   0. (10)

With the aid of these commutators wre can set up a representation 
in the Hilbert space, where each state is characterized by the 
number of particles present. Further, each state in this repre­
sentation is an eigenstate of the free-particle Hamiltonian Ho in 
(3), but not of the total Hamiltonian (2). Let us denote these 
states by

nV’ nN’ nk^’ (11)

where nv, nN, and nk are the numbers of “free” V-particles, 
A7-particles, and O-particles present3).

With the aid of (7)—(10) it can easily be verified that the 
following two operators commute with the total Hamiltonian.

Qi = 2?w(p)w(p) + JvX/’Wp). (12) 
p p

[H, Qf] =0, i = 1,2.

(13)

(14) 
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As each state (11) is also an eigenstate of the operators Qif it 
follows that the eigenstates of the total Hamiltonian H can be 
built up as linear combinations of states (11) belonging to the 
same eigenvalue qt. This will considerably simplify the problem 
of diagonalizing the total Hamiltonian and, in some cases, even 
give an explicit solution. As an example, we may mention that 
there is only one of the states (11) which has ql = r/2 = 0, viz. 
the state I 0, 0, 0 > or the "free-particle vacuum". Hence, this state 
is also an eigenstate of the total Hamiltonian, and a simple cal­
culation gives the eigenvalue zero for this operator. The "physical 
vacuum” is thus the same as the free-particle vacuum for this 
model. In the same way, we can show that the physical A7-par- 
ticle states and the physical O-particle states are identical with 
the corresponding free-particle states, but that the free V-particle 
states are not eigenstates of the total Hamiltonian. II will be 
necessary to consider a linear combination of the states | lv, 0, 0 > 
and J 0,ljy, lfe)> to construct an eigenstate of the total Hamiltonian 
for this case. We shall later return to this point. For the 
moment we only remark that, under these circumstances, it will 
not be necessary to introduce renormalizations of the masses of 
the A7-particIes or the 0-particles. The mass renormalization in 
the model is now performed by adding the following term to the 
Hamiltonian (this term will not change the conservation equa­
tions (14)):

ôH = — ôm £y>'v(p)V’v (p). (15)
i>

The constant ôm in (15) should, if possible, be determined in 
such a way that the state corresponding to the physical V-particle 
has the mass m appearing in Ho. Following the custom in quan­
tum electrodynamics, we also introduce a renormalization of the 
coupling constant g0 and of the field operator y>v by a factor A7 
in the following way:

<7 = f/o'TV, (16)

W(p) = Vv(P) y- (17)

It is important to realize that the constant A7 in (16) and (17) 
can by definition be chosen to be real, as there is always an 
arbitrary phase factor in the field operators. The choice of a 
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real N only fixes the phase connection between ipv and tpv and 
can have no physical consequences. The value of 2V is determined 
by the condition4*

<0|^'r(p)| V> = 1. (18)

The state | V ) in (18) is the physical V-particle state and the 
state J 0 > the physical vacuum. In what follows, we drop the 
dash on the renormalized ^y-operator as the corresponding 
unrenormalized operator will not be used again. In terms of our 
renormalized quantities the Hamiltonian and the canonical com­
mutators will now read

H = H0 + Hint + <3H, (19)

Ho = mN2 ^v'y(j))y)v(p) + m V’n (p) (p) + co (k) (k) a (k), (2(1)
p p

Hint = — ~7= y-7 ^^(wC/OV'xCp )«(^) + «^(^O^xCP^V'rCp)), (21)
y V  y 2 co

p = p' + k

ôH = — ôm N2 (p)vv(p) > (22)
p

(Vv(p), V’v(p)} = ^2Ôp,p' (other commutators unchanged). (23)

Eqs. (19)—(23) will be the foundation for the following discussion.

II. The Physical P-Particle States and the States Describing 
the Scattering of one A7-Particle and one 0-Particle.

We now try to find an eigenstate of the total Hamiltonian of 
the form

\ z y — I 1 y > 0, 0 )> + & (Ä’) J 0, lxy, 1*  />• (24)
7c

In this expression all terms have the same total momentum. In 
the following formulae, a factor expressing conservation of three- 
dimensional momentum is very often left out. Calling the eigen­
value of the state (24) in + co0, and using (19)—(23), we obtain 
after some straightforward calculations
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y ø (I) f(co) 

1/2 co
k '

(CO —— CO0) 0 (Â-) 9 fM

(25)

(26)

Eliminating 0 (À’) from (25) and (26) we gel the following equation 
for the determination of the eigenvalue co0:

co0 + ôin +
2 N2 V

\ T<'”> 1.
■  / co co — co0 
k

(27)

The constant ôm is now determined from the condition that 
co0 = 0 should be one solution of (27). The corresponding eigen­
state (24) is, when properly normalized, the physical V-particlc 
state. This gives us

(28)

Furthermore, using Eq. (18), we get

The results obtained so far in this paragraph correspond exactly 
to those obtained by Lee. In particular, Eqs. (33) and (16) 
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together give Lee’s result (1) if the’ form factor is put equal 
to unity for all values of co. However, if we have a finite cut-off, 
Eq. (33) can be written

N1 2 = 1----- ,

1 + J?2 Y7 f2WMo
2 V co3 (co — o0)

k

Pcrit
(34)

Pcrit (34 a)

The value (34) of N2 lies between zero and one, as was to be expec­
ted, only if the renormalized coupling constant g is less than a 
critical value </crit depending on the cut-off function and defined by 
(34a). If there is no cut-off, the critical value of the coupling is 
zero. Further, if the renormalization of the coupling constant is not 
performed explicitly, but if all quantities arc expressed in terms 
of the original constant g0, we have to substitute the expression

2 2
9o ' 9crit
2 i ~2

9o 4~~ Périt
(35)

for g2 everywhere in our formulae above. Eq. (35) contains the 
definite prediction that the renormalized coupling is always less 
than the critical coupling if the Hamiltonian is hermitian, i.e. if 
g0 is real. As stressed by Lee, it is of some interest to investigate 
also the case of the renormalized coupling being larger than the 
critical value and the Hamiltonian being non-hermitian. The cru­
cial question to be answered is whether this violation of the ordinary 
methods of quantum mechanics will have any observable con­
sequences or if we are able in this way to get an at least partially 
satisfactory theory.

We now turn to the investigation of the other solutions to the 
eigenvalue problem (27). Making use of (28) and (33) we can 
rewrite Eq. (27) in the following way:

h (coq) — co0
(36)
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The second factor in (36) has a pole each lime co0 = co,, where 
co,- is an eigenvalue of the unperturbed Hamiltonian Ho. As the 
derivative of the last factor in (36) with respect to co0 is always 
positive, this factor must vanish once, and only once, in each 
interval (co,-, co/+1). The corresponding eigenstates (24) describe 
the scattering of one cV-particle and one 0-particle. After some 
formal manipulations these states can be written,

xV, 0> (37)

« (Å-,//) = (38)

7—1
1 (39)

o. I.V. lt> + 2'“(AO.-')|o. l.v, lt-> + «O.V|lr,0.0> 

k'

9 /?(O/'(o/) I „ 1 , . . . , J
----- IP  ---------1- i no (co — co) ’ , 

co — co

+ T - J> -------nH l,--------+ ' («>—«>)
2 I —CO 3 \ O) — CO /

k' \ ! -

In (38) and (39), the limit V—► oc has been anticipated and these 
equations contain a prescription how the denominators must be 
treated when the integration over P is performed. This prescrip­
tion corresponds to only outgoing waves in the second term of (37). 
The only incoming particles in these states have momentum I’. 
From the formulae above it is possible to compute that part of 
the S-matrix which corresponds to the scattering of ^-particles 
and 0-particles by each other. The result is the unitary matrix

< .V, o I S I AT/, O') = 0^ (40)

From (40) we get the differential cross section

with

do 1

= |Tpsi,,2d 

tgé = £ lilfw.
4 n h (co)

(41 )

(42)

Again, this corresponds exactly to the results obtained by Lee. 
In the last three formulae, the limit V —> is performed and the
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integral appearing in 7t(<y) {Eq. (36)) is defined to be a principal 
value.

It remains to discuss the important question whether the states 
(32) and (37) obtained so far form a complete set or if there are 
possibly other states of the form (24) which are also eigenstates of 
the total Hamiltonian. If other states exist, they must correspond to 
other solutions of the eigenvalue problem (36). We therefore begin 
by a more detailed discussion of this equation. The argument 
given so far has exhausted all roots of this equation in the domain 
œ0 > p*.  For <w0 < p, we find that the second factor of (36) 
still has a positive derivative and that it approaches the value 
N2 = 1 —g2lglm f°r very large values of | co0|. If the coupling 
constant is less than the critical value, we have no extra root of 
(36) and the states considered so far form a complete set. On 
the other hand, if the coupling is larger than the critical coupling, 
there will be exactly one extra root of (36) for a>0 < p. The cor­
responding eigenstate is not a scattering state, but will represent 
another state of the V-particle.t This state can be constructed 
explicitly from the formalism given here, and the result is

* If the cut-off function vanishes exactly for co larger than some value £2, 
the domain co0 > -Q needs a special discussion, as the argument after Eq. (36) will 
not be valid there. Actually, it can be shown that there is an extra root in this 
domain if g is less than the critical value ø . To avoid inessential complications 
of the argument, we therefore consider only cut-off functions that have a long tail 
as, e. g., = e~ o>/^, where this question will not appear.

t In footnote 4 of Lee’s paper, the possibility of another stable state of 
the V-particle is briefly mentioned, but no detailed investigation of its properties 
is given. In our discussion, this state will be of paramount importance.

N‘ ly,0,0> +

h (_ 2) = 0 ; 2 > 0. (44)

The normalization of the state (43) is chosen in a way that will 
be justified in the next paragraph.

It will be shown in Appendix 1 that Eg. (36) has no non-real 
roots.
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III. Introduction of an Indefinite Metric in the Hilbert Space.

The negative sign for A'1 2 in (34), if cj is larger than c/crit, ob­
viously leads to difficulties with the normalization of the physical 
V-particle state (32). If we try to correct the normalization of 
this state by multiplying it with a suitable factor, we are ultimately 
led to a modification of our renormalization prescriptions 
insofar as we can no longer use the same factor in (16) and (17) 
to renormalize the coupling constant and the field operator ipv. 
In this case, extra factors have to be inserted in the interaction 
Hamiltonian (21), and it can easily be seen that it is not possible 
in this way to make the theory mathematically consistent. The 
only possibility of saving the normalization of the state (32) is then 
to define the norm of a state a | ny, nN, n/c> to be |«|2(—l)nL 
As N2 in our case is real and negative, this indefinite metric will 
be the appropriate mathematical framework for the Lee model. 
The introduction of this device will not change many of the formal 
operations performed earlier, and particularly the scattering 
states (37) and the S-matrix (40) will be uninfluenced by it. On 
the other hand, the norm of the state (32) will be one as it stands 
in the new metric. The norm of the state (43) will be

1 _ <72 X f2 (co) 
h'(-À)\‘2 ~ co

k

_L__±+_L_
(co -f- A)2 co2 co2 (co T A)

h'(-_X) 
h'(-Å)

1.

The norm of the slate | > is negative and has been nor­
malized to — 1 in (43).

To make the formal discussion as simple as possible it will 
now be convenient to introduce a “metric operator” which 
has the following matrix elements for the free-particle slates (11):

< nv, nN, nt|ïj|n'v. n'x. n'k > = 5„,<5„v„;v•(—l)"v. (46)

(45)
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For the physical states considered up till now, we have

<v|??|v>= <N,ö\y\N,0> = 1, (47)

< V_z|7/| V_A> = - 1. (48)

The non-diagonal elements of r] between these states are all zero. 
The condition for an operator F to have real expectation values 
is no longer that it is hermitian, but rather that it is “self-adjoint” 
in the following sense :

F = F+ = T]F*r].  (49)

A detailed examination of the foregoing calculations shows 
that the introduction of the indefinite metric will make the 
mathematics formally consistent if the adjoint operators yhy, 

and a+ are introduced in Eqs. (20)—(23) instead of the 
operators tp'y, and a*.  This will make the Hamiltonian self- 
adjoint. On the other hand, the right-hand side of (23) will no 
longer have a definite sign, and a negative value of this c-number 
will not necessarily be inconsistent with the foundations of the 
theory. A special case of the expectation value of this anticom­
mutator is examined in Appendix I.

If the transformation leading from the free particle states 
J n > to the physical states | > is written as a matrix F,

|P> = Z\n><n\u\p>> (50)
|n>

this matrix will not be unitary, but have the property

U+U — 7] U* t] F = 1. (51)

It is then important to decide whether the S-matrix of the 
theory also has the property (51) rather than being unitary. This 
expectation is not in contradiction with the result (40), as the 
operator p has only matrix elements + 1 for the physical states 
involved there. Eq. (51) will have non-trivial consequences only 
if physical states with a non-positive norm are involved. The 
simplest process of this kind is the scattering of a 0-particle by 
a V-particle either in its normal state or in the state In
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the former case, il is to be expected that transitions of the V-par- 
ticle to its new state take place and that these transitions possibly 
occur with “negative probabilities”. The following paragraph is 
devoted to a discussion of these problems.

IV. The Scattering of fl-Particles by V-Particles.

We will now study eigenvectors of the total Hamiltonian of 
the form

:> = Z01O')--V-| ly.O, k') I 0, l.y, 1A., 1A.>. (52)
k k, k'

If the eigenvalue is again called m + co0) a straightforward cal­
culation will yield the following equations for the coefficients 
in (52):

øj (/<) (co — co0 — ôm) (53)

ø2 (k, k') (co + co' — co0) (54)

In this case, we arc not interested in the complete set of states 
(52), but will only try to find those special stales corresponding 
to the scattering of a 0-particle by a V-particle in its normal 
state. In other words, we look for solutions to (53) and (54) 
where $i(Ä) is of the form

(k> ^’o) — ^k, k0 + V (^, ^o) (55)

with outgoing waves only in y(k,k0) and in ø2(Å*,Å ’'). The last 
condition gives us

(56)
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1 (57)
co0) .

(58)1

From Eq. (57) we then conclude

y k„)U(k,

k (59)
1

k" (6'0

x P

]/ O)

|/co"

j/co'

Contrary to the situation in paragraph II, it will not be possible 
to tind an explicit solution to Eq. (57). However, this will not 
be necessary for our purpose, as it is sufficient here to investigate 
the properties of the S-matrix. This can be done with a method 
very similar to Moller’s proof of the unitarity of the S-matrix 
if the Hamiltonian is hermitian.6) Following Møller, we intro­
duce the following quantity

of (59) and (60) vanishes, as does the correspond- 
Møller’s paper, only if co0 < 2 //. In this case, 
never vanishes in the physical interval (//, x) of 

co", and the transition V+ 0

or, using (28) and (33),

|/co"

The sum 
ing sum in 
co + co"— co0 
the frequencies co, co", and the transition V+ 0 N + O' + 0" 
cannot occur on the energy shell. In the opposite case, co0 >2//, 
this transition causes a slight complication and we get

2 V l/co _> k'

,2



With the aid of (55), (57), (58), and the vanishing of h (0), we have

V (k, ko) h (co0— co) = i U (k, k0).

We write the solution of (62) symbolically as

(Â-, k0) = U (k, k0) 
h (co0 — co) \

(62)

(63)

where the plus sign indicates that outgoing waves are to be chosen 
at the zeros of h(co0— co). Using this result, we can write (61) as

Ô (co0- a>') [U(I0, k{}) + U*  (i;, kQ)]

+ iô(co0 — coq) U*  (k, k0) U (k, k'o) 
k

1
h (co0 —co)+

—y-<5(co0— co0)^<P*(k,  Å'o) ~^>1(k", k0)6(co + co"—co0) — 0.
V k" V coco

The second bracket of (64) can be rewritten in the following way:

1
h (cop — co)+

1
h (<z>0 — co)_ (65)

where the summation is over all the roots of the equation h(x) = 0. 
To simplify the notations further, we introduce the matrices

< V, 0 I Rw I V', O'y = 2 71Ô (co — co) U (k, k' ), (66)

< V_Å, 0 I B(2) I V, 6' > = 2 nd (co + k — co) U(k’k) f 
V~h'(-X)

(67)
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(68)

It can be shown that the sum over all the roots in (65) correspond­
ing to the scattering states in paragraph II and the last term of 
(64) can be expressed in terms of the matrix R^\ Using this, 
we can write (64) as

< V, 0 I 7?(1) + Æ(1)* + Æ(1)* Rw I V, 0' > ]

-<V,0|fi<2)*R (2)|V',6'> + < V,0|fl* 3,*R (3)|V'.0'> =0. I
(69)

It now follows that the S-matrix of the Lee model which, for the 
states considered in this paragraph, is given by 

S = 1 + + fi(2)+ R(3\ (70)

is not unitary, because the probability for the transitions V + 0 -+■ 
+ O' is to be counted negative in (69). As was suggested 

earlier, we see instead that the S-matrix has the property

yS * r]S = 1 GO

if the diagonal elements of y belonging to the states | V_%, O') are 
pul equal to —1. It can also be shown that, if transitions from 
the states | V_ jp 0 ) are considered, a similar result will be ob­
tained. The non-unitariness of the transformation (50) between 
the free-particle states and the physical states has its close cor­
respondence in the non-unitariness of the S-matrix and makes 
the model unacceptable for physical reasons.

At this stage, one might ask if it is not possible to reinterpret 
the formalism with the aid of an argument similar to hole theory 
in quantum electrodynamics. One would then, e. g., call the state 

the vacuum, and the state which is here called the vac­
uum a state with one “anti-particle”. However, it is easily seen 
that it is not possible to make the formalism consistent in this 
way as no reinterpretation along such lines will ever change the 
non-unitary properties of the S-matrix in (69).

Dan.Mat. Fys.Medd. 30, no.7. 2
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The conclusion of our discussion is then that the model sug­
gested by T.D.Lee is in accordance with the physical probability 
concept only if a cut-off is introduced and if the renormalized 
coupling constant is less than the critical value given by Eq. 
(34 a). In this case, the constant TV2 lies between zero and one, 
as is expected from general arguments.2' If there is no cut-off, 
the critical value of the coupling constant is zero.
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Appendix I.

In this appendix, we show by an explicit calculation how the 
indefinite metric is able to account for the negative sign on the 
right hand of the anticommutator

{vv(p):Vv (/>') } = ^. p' ■ (A.l)

We compute the vacuum expectation value of this quantity for 
7 > 7crit and p = p', and obtain

<0|{v;v(p)5 W(P) )|°> = ^?|<0|w(p)|->|2<^h|^>- (A.2) 
|z>

In (A. 2) the summation is performed over any complete set of 
states. We can, e.g., sum over all physical states and get contri­
butions from the physical V-particle state, the state X and 
the scattering states | A, 0 X According to the result of paragraph 
II, these contributions will be

<° |{v4(/X> VV(p)/|o> = 1+Z|K*)| 2
k

= i+^i^«la+yW)-
If there were no indefinite metric, the right-hand side would be 
positive and larger than one. This is also the usual proof2) that 
N2 is a positive number less than one. In our case, the last term 
has a negative sign, and there is no general principle according 
to which the right-hand side of (A. 3) has a definite sign. We 
shall now show explicitly that this quantity has the correct value 
given by Eq. (33). The proof is essentially based on the fact 
that the function h (z) defined by (36) and extended to the com­
plex plane by

2*
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f(^)-
(A. 4)

k

has zeros only on the real axis. Indeed, one has with z = x + iy,

(A.5)

(A. 4 a)
z) .

which is unique in the complex

along the path illustrated in Fig. 1 in two different ways. We first 
remark that

which is always different from zero for y A 0.
Moreover, passing to the limit V—> x , h(z) transforms into an 

analytic function given by

= - lim Im
e -> 0

—A'4-2 ni \h (z)
'-c

In,h(^=<l2In,
z 2 V  co3 (co — :

k

h(z) = z\l+Yz(r(m)^=L^<la}

with the abbreviation y — I 
\ 4 %2/
plane cut along the real axis from to positive infinity. The 
imaginary part of h (z) is discontinuous at this part of the real 
axis, having opposite signs in the upper and the lower half plane, 
whilst the real part is continuous. To this ambiguity of h (z) 
corresponds the circumstance that z = /z is a branching point of 
the square root type of h (z) (c/. the explicit form given in Ap­
pendix II for the particular case /*(co)  = 1).

These properties of h(z) enable us to evaluate the integral

2 X----- 7

co3 (co — z)

\ c/co
] h (co — i e)

We now divide the path C into two parts. One of them, C±, starts 
from a point z = 7? — ie with arbitrarily large R and arbitrarily
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small, positive e, goes below the real axis at a distance £ from 
it, encircles the point z = /z in the negative direction, returns 
above the real axis at a distance e, and ends at the point 
z — R — is. The second part, CR, is a large circle with radius R 
of which a small part near the positive real axis is omitted.

Performing the limiting process £—> 0, in which the contri­
bution of the circular arc of Cj gets arbitrarily small, one first 
obtains

= — 2 z lim Im \ — -------- - = —2 ni \ß (k) 2. (A. 7)
e^o \h{z — ie)

In this limit, the second part CR of C goes over into the full 
circle CR. The corresponding integral is easily evaluated with 
the aid of the asymptotic form of the function h (z) (cf. the remarks 
before Eq. (43)) and gives

(A. 8)
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Hence, in this way we obtain

2 1
(A-9)

On the other hand, the absence of non-real zeros of h (z) and a 
knowledge of the residues of 7i(z)—1 at the poles z = 0 and 
z = — Â permits a direct evaluation of the integral

Hence,

—,Ç-''ÿ= i2 % z ' h (z)
1

V(=-T)- (A. 10)

(A. 11)

Eqs. (A. 11) and (A. 3) together give the expected result (A. 1). If 
the coupling constant is less than the critical value, the integrand 
in (A. 9) will have no pole at z = — A, and the last term in (A. 10) 
will be missing. Other matrix elements of the commutators and 
anticommutators can be treated in similar ways.

Appendix II.

In the particular case of no cut-off /"(co) =1, 1/N = 0 the 
function h(z) (cf. (A.4a)) can be expressed in closed form:

if co > p and £ > 0,

(A. 12)

/i (_ 2) = — Â + y A+^+i'F-yiog if Â p . (A. 13)

Apart from the imaginary part in (A. 12) these two cases can also 
be represented by the same fomula if an absolute value is taken 
for the argument under the logarithm. For the third interval of 
the real axis, one has
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h (co) = co + y if —//< co < /z. (A. 14)

These expressions can be used to find the position of the root

h (— 2) = 0 (A. 15)

both in the weak and in the strong coupling limit. For weak 
coupling, we find from (A. 13) 

(A. 16)

which excludes any kind of power series expansion * In the strong 
coupling limit the application of (A. 14) gives the following ex­
pression for the root:

— co = z if y»l (A. 17)
n y

with a possibility of an expansion in powers of y—1.

* This is of some interest in connection with the failure to obtain a power 
series with a finite radius of convergence by application of perturbation methods 
to some examples of renormalizable field theories. Cf. C. A. Hurst, Proc. Cambr. 
Phil. Soc. 48, 625 (1952); W.Thirring, Helv. Phys. Acta 26, 33 (1953); A. Peter- 
mann, Phys. Rev. 89, 1160 (1953), and R. Utiyama and T. lMAMURA,Prog. Theor. 
Phys. 9, 431 (1953).

Indleveret til selskabet den 15. april 1955.
Færdig fra trykkeriet den 17. september 1955.





Det Kongelige Danske Videnskabernes Selskab
Matematisk-fysiske Meddelelser, bind 30, nr. 8

Dan. Mat. Fys. Medd. 30, no. 8 (1955)

DEDICATED TO PROFESSOR NIELS BOHR ON THE
OCCASION O F HIS 70TH BIRTHDAY

AL CHARGES AND
ELECTRON CAPTURE CROSS

ISSION FRAGMENTS IN GASES
BY

N. O. LASSEN

København 1955
i kommission hos Ejnar Munksgaard



Printed in Denmark. 
Bianco Lunos Bogtrykkeri A-S.



1. Introduction.

In the present paper the results of some older measurements 
are given, the publication of which for various reasons has 

been delayed a few years. In the meantime a theoretical paper 
by Bonn and Lindhard1)—in the following cited as B. L.— has 
appeared, and since it affords a new basis for the treatment of 
the experimental results, a brief report of the latter seems appro­
priate.

2. Experimental Method.

As mentioned in a previous paper2) — in the following referred 
to as I — fission fragments have been deflected in a magnetic 
field, and from the curvature of the paths the total charges were 
estimated. Fig. 1, which shows the experimental arrangement, is 
reproduced from I. Fission fragments from a strip-formed, thin 
uranium layer (11) passed through a movable slit (12). Through 
a second slit (16) covered with a mica foil they entered an 
ionization chamber. The deflection chamber, i. e. the space 
between the uranium layer and the mica window, could be 
evacuated or filled with a gas to a low pressure. Records were 
made for various positions of the intermediate slit, and in this 
way the deflection distribution was obtained. From the pulse 
sizes it was possible to distinguish between the two groups of 
fragments. For further details the reader is referred to I.

Fig. 2 shows some deflection distributions obtained. When 
the deflection chamber is evacuated no change of charge takes 
place in it, and the deflections will be determined by the charges 
with which the fragments leave the surface of the uranium layer 
or any solid covering foil. The widths of the distributions give 

1*
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Fig. 1. Experimental apparatus.

information about the charge fluctuations in the solids. When a 
gas is admitted to the deflection chamber the fragments will, 
in collisions with the gas atoms, capture and lose electrons along 
the path, and rather quickly an equilibrium between loss and 
capture is established. The charge of each fragment will fluctu­
ate around the average value, which will be reached close to 
the uranium layer if the gas pressure is high. In this case charge
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15 20 25 30
Fig. 2. Charge distributions for fission fragments. The abscissa a is the displace­
ment of the middle slit in the deflection apparatus, given in mm. a is proportional 

e
to —. Below is given the approximate charge scale (in units of the electronic charge) 

mv
obtained by using the mean value for mv. Circles refer to fragments having 
traversed a thin Be layer and emerging into vacuum. Triangles refer to fragments 
emerging into argon at a pressure of 0.9 mm Hg. White and black points correspond 

to the light and heavy fragments, respectively.

exchanges will take place so frequently that the deflection will 
be determined almost solely by the average charge. The widths 
of the distributions obtained in this case are due mostly to the 
geometry of the apparatus. Of course, the gas pressure must not 
be so high as to cause appreciable stopping of the fragments 
inside the deflection chamber.

As illustrated by Fig. 2 the charges of fragments leaving 
solids were observed to be considerably higher than the equi­
librium charges in gases. A fragment emerging into the gas will 
therefore start capturing electrons; if, however, the gas pressure 
is very low, the equilibrium charge will not be reached until a 
considerable part of the path in the deflection chamber is 
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traversed. The distance travelled by the fragments before charge 
balance is obtained will be a function of the pressure. Accord­
ingly, when the pressure increases from zero the deflection 
distribution gradually changes (see I, figs. 4—9). Fig. 3 shows 
the most probable deflections, i. e. the abscissae a for the peaks 
of the deflection curves, as functions of the argon pressure in 
the deflection chamber. Neglecting the width of the momentum

Fig. 3. Most frequent deflection a in mm plotted against the pressure of argon 
in mm Hg in the deflection chamber. Open and full circles refer to the light and 

heavy fragments, respectively.

distribution of the fragments, the deflections are proportional to 
the total charges e, the relation being e = 1.70 • a, where e is 
measured in units of the electronic charge, and a in mm. The 
shape of the decreasing part of the curves for low pressures gives 
information about the rate of change of charge along the path 
and enables us to estimate the electron capture cross-sections 
of the fragments. Regarding the increase in charge for higher 
pressures, which illustrates the influence of excited states of the 
fragment ions on electron capture and loss cross-sections, the 
reader is referred to 1 (see also 3) 4>) and to B. L., where a 
thorough discussion of these phenomena is given.

The estimation of the capture cross-section presents us with 
the following difficulties. Not only do the fragments capture 
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electrons in collisions with the gas atoms, but they will of course 
also in some collisions lose electrons, even when their charges 
are higher than the equilibrium values. We can measure directly 
only the difference <rc — between capture and loss cross­
sections, and the fact that both cross-sections may be expected 
to vary with the instantaneous fragment charge further compli­
cates the phenomenon. However, from the fluctuation distribu­
tions in Fig. 2 (the right-hand curves) it follows that, for charge 
values a few units higher than the balance charge, ol is negligible 
as compared with crc. Hence, by simply disregarding the loss 
processes and assuming the capture cross-section to be nearly 
constant, a first approximation giving the order of magnitude of 
the average value of the latter could be obtained. Meanwhile, in 
§ 4 of this paper a different method giving a somewhat more 
exact estimation will be described.

3. Experimental Results.

In I, deflection-pressure curves were given for A and II2. 
Similar curves were later measured in He and N2. Also, curves 
were measured in the various gases for slower fragments. In 
order to slow down the fragments a mica foil of thickness 0.47 
mg per cm2 was placed over the uranium layer. The fragments 
passed obliquely through the foil. Denoting by v1 and v2 the

Table 1.
Equilibrium charges of fission fragments.

Light fragment Heavy fragment

Pj ~ 6 v0 v\ ~ 5 t>0 J’z ~ 4 u0 i/2 ~ 3 v0

15.8 13.4 12.6 9.2
He 14.1 11.7 11.6 8.6

2 15.1 13.8 13.9 10.5
A 15.4 13.7 14.6 10.4
U 20.0 22.0
Mica 19.4* 18.0*

* In I the charges for fragments leaving mica with reduced velocities were 
erroneously given as 18.8 and 17.2 instead of 19.2 and 17.8. The small differences 
between the latter figures and those given in the table are due to uncertainty in 
the zero position for the deflection scale.
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3 - 
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0.04 0.03 0.12 0.16 0.20
i i----------------- 1— '

0.04 0.03 0.12 016 0.20
Fig. 4. Deflection vs. pressure curves in various gases. The curves to the left 
and right side refer to fragments with initial and reduced velocities, respectively. 
Open and full circles refer to the light and heavy fragments, respectively. The 

e
deflection is proportional to —. Neglecting the momentum spread we have for 7HP
fragments with full velocity, e = 1.70-a; for light and heavy fragments with 
reduced velocities, e = 1.41-a and e = 1.24-a, respectively, a in mm, and e in 

units of the electronic charge.

initial velocities of the light and heavy fragments, respectively, 
and by and v2 the velocities after their passage through the 
foil, one has

= 0.83 •
v2 — 0.73 • v2.
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Ehe velocities thus happen to be close to 3, 4, 5 and 6 times 
u0, the orbital velocity of the hydrogen electron. Fig. 4 gives the 
beginning of the curves for low pressures in the various gases. 
In all cases, at least two points corresponding to higher pressures 
were measured and from the latter points the equilibrium charges 
were determined. Table 1 summarizes the results. Within experi­
mental errors the charge of the heavy fragment varies in all 
gases proportional to the velocity, in agreement with the approxi­

mative formula given by Bohr5>, e = Z1/3 • —, Z being the
Vo

nuclear charge number of the fragment. The same applies to 
the light fragment in H2 and He while, in the heavier gases, the 
charge of the light fragment varies more slowly with velocity. 
This result, however, is also in conformity with theoretical 
expectations, as discussed by Bohr and Lindhard.

4. Calculation of the Effective Capture Cross-Section.

The derivation of the effective capture cross-section may be 
illustrated, taking as an example the case of the heavy fragment 
with reduced velocity in AT2. The theoretical estimates are obtained 
in the way described by Bohr and Lindhard. For the capture 
cross-section we have the formula (B. L. (4.5)) 

where z is the atomic number of the stopping gas (here 7), a0 
and v0 are the radius and orbital velocity of the hydrogen atom 
in the ground state, and v is the fragment velocity (here 3 p0). 
In Fig. 5 <jc is plotted against e. From the experiment the equi­
librium charge is known to be 10.5 and, hence, for this abscissa 
(Jl = ac. Assuming crz to vary proportionally to e~~3 (cf. B.L.), 
the curves for <7Z and ac — alt respectively, are drawn. For 
e = 18, the mean charge with which the fragments enter the gas, 
we find crc — crz = 21

Consider, next, the empirical estimation of crc—crz. For 
simplicity, all fragments are assumed to start with e — 18.
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Fig. 5. Capture and loss cross-sections plotted against charge for the heavy fission 
fragments with v — 3 v0 in nitrogen at low pressure. Cross-section in units of

where a0 = ——2, and the charge in units of the electronic charge e.

From Fig. 5 it is seen that the effective capture cross-section 
varies almost linearly with charge. Thus, we assume

the balance charge being 10.5, and a(, denoting the effective capture 
cross-section for a fragment with charge e. Then, for the mean 
charge ë (x) at a distance x from the uranium layer, we have 
(cf. B. L. (2.5))

e (.r) = 10.5 + 7.5 e
i— cr18nx

7,5
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Table 2.
Effective capture cross-section eg— eg in units of na^.

Light fragment Heavy fragment

o ~ 6 v0 v ~ 5 v0 p ~ 4 v0 v ~ 3 v0

exp. th. exp. th. exp. th. exp. th.

h2 0.06 ±0.02 0.04 0.8 ± 0.3 0.13 1.6 ± 0.6 0.9 8 ±2 3.5
He 0.7 i 0.3 0.1 4 ±2. 0.55 9 ±2 3.7 17 ± 5 15

1.4 ±0.5 1.6 8 ±4 2.7 15 ±8 13 20 ± 6 21
A 2.5 ±0.8 2.7 6 24 ±8 18 30

where n is the number of atoms of the stopping gas per cm3 
and Â is a quantity which may be called the effective mean free 
path for electron capture by fragments with e = 18.

Suppose the gas pressure has such a value pt mm Hg that 
Â = 10 cm. The function ê (x) may be calculated and, from the 
known variation of the magnetic held, the deflection of a ficti­
tious fragment travelling with just the mean charge may be found 
by numerical integration. The deflection value so obtained is 
assumed to coincide with the peak for the actual deflection 
distribution, an assumption which is presumably not much in 
error. By calculating for various pressures, the whole deflection­
pressure curve is obtained, the pressure being given in units of 
pp This curve is shown in Fig. 4, px being chosen equal to 
0.0008 mm Hg, which fits best with the experimental point. 
This value corresponds to cr18 = 20 a result which is in 
close agreement with the theoretical estimate.

In Table 2 are given the experimental results for eg — eg in 
the various gases and for the different velocities, all estimates 
being based on the assumption that eg — eg varies linearly with 
charge. The values corresponding to velocities 6 a0, 5 v0, 4 n0, 
and 3 v0 refer to charge values 20, 19.4, 22, and 18, respectively. 
For comparison are given theoretical values, kindly estimated 
by Mr. J. Lindhard in the way described in B.L. The agree­
ment is satisfactory for the values referring to nitrogen and 
argon, whereas, in the lighter gases most of the experimental values 
are rather high as compared with the theoretically computed 
figures. Since the cross-sections are small in the lighter gases, 
it is clear that possible impurities in the latter would just tend 
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to increase the cross-sections. However, great care was taken to 
avoid impurities; before the experiments the deflection chamber 
was always filled three times and evacuated carefully between 
the fillings; during the experiments the chamber was connected 
to a liquid air trap in order to remove vapors. The tank helium 
was known to contain three per cent nitrogen, but it was slowly 
filtered through charcoal in liquid air and should thus be very 
pure. The tank hydrogen was said to contain less than Ü.1 per 
cent impurities. Also, the small experimental value obtained for 
gc — oL of the light fragment with n ~ 6 t>0 in H2 seems to show, 
quite apart from the good agreement with the theoretical figure, 
that the possible impurities are much too small to influence 
essentially the other values for oc— in hydrogen. As seen, 
the experiments indicate for the light fragment in H2 a very strong 
velocity dependence of the effective capture cross-section. In He 
Gc — is found experimentally to be considerably higher than 
the theoretical estimate, as well for v — Q v0 as. for v — 5 v0, 
whereas the ratio between the cross-sections corresponding to 
the two velocities is in agreement with the theory. For the heavy 
fragment, in H2 and in He, the differences between experimental 
and theoretical values are less pronounced.

The present work was carried out at the Institute for Theo­
retical Physics in Copenhagen and the author wishes to express 
his heartiest thanks to the Director of the Institute, Professor 
Niels Bohr, for his great interest in the work and his continued 
encouragement. My thanks are also due Professor J. C. Jacobsen 
for helpful advice. Furthermore, I wish to thank J. Lindhard, 
mag. sc., for valuable discussions.
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The applicability of the nuclear track plate NTB-2 (of Eastman Kodak, 
Rochester, N.Y.) to quantitative beta track autoradiography has been investigated. 
A constant source of C-14 beta particles was brought in contact with the emulsion 
and the number of tracks registered per unit area of the plate was counted. The 
counting results obtained by four different investigators evaluating a total of 
50 images were subjected to statistical analysis. The reproducibility of the track 
count was studied, both with respect to the counting ability of one and the same 
investigator repeatedly confronted with a given track pattern, and to the evaluation 
of the same pattern by different investigators. A statistical analysis of the counting 
results permits one to estimate the homogeneity of the emulsion in small areas 
of the plates, to compare the homogeneity of plates from the same batch, and 
their sensitivity from batch to batch. The efficiency of the plates and the effect 
of storage conditions have likewise been investigated. The contributions of various 
sources of error to the uncertainty of the final counting results were estimated.

Introduction.

In 1950, it was shown by Boyd and Levi1) that beta particles 
of low energy, e. g., from radio-carbon or radio-sulphur, 

register as tracks in nuclear emulsions of the type NTB-2, manu­
factured by the Eastman Kodak Company in Rochester, N.Y. At 
that time, this was the only photographic emulsion commercially 
available which would register low energy electrons as tracks. 
This offered a possibility for improvement of the sensitivity and 
the resolution of existing autoradiographic techniques. In random 
grain autoradiography with low energy beta particles, on the 
average one grain is made developable per particle traveling 
through a thin emulsion. Therefore, at low level of activity, the 
blackening of the emulsion has to be established by grain 
counting. In the case of the NTB-2 emulsion, beta particles 
entering the emulsion produce tracks which are more easily 
recognized and counted than are single grains.

The mentioned authors floated sections of tissue containing 
a C-14 labeled compound on NTB-2 plates and observed—after 
suitable exposure—beta tracks in the emulsion under the tissue. 
The number of tracks per unit area under a section of a given 

1*  
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thickness was counted and, besides, the amount of C-14 present 
in the tissue was determined by means of an ionization chamber. 
The track count was found to be in satisfactory agreement with 
the result of ionization chamber measurements on samples of 
the same tissue. These findings suggested that track autoradio­
graphy might be a means of localizing the labeled compounds 
within the tissue or the individual cells quantitatively and with 
a resolution higher than that obtained in a random grain auto­
radiogram on an NTB plate. However, it remained to investigate 
how high a resolution can be obtained in a beta track auto­
radiogram; evidence had to be presented that track counting 
offers a reproducible and quantitative measure of the amount 
of tracer element present in the tissue under investigation.

In order to verify the applicability and reproducibility of the 
method, standard conditions for exposure and processing of the 
plates, and a reproducible technique of track counting under the 
microscope had to be established. The development of the 
counting technique brought to our attention so many points of 
significance that some details of the method are described in 
the following.

After a number of unsuccessful attempts at preparing a 
suitably thin and homogeneously active standard which could 
easily be handled, it was decided to use as a standard a piece 
of a C-14 polystyrene foil (manufactured by the A.E.C. in Oak 
Ridge), containing 0.6 microcuries of C-14 per sq. cm. The foil 
weighs 28 mg/cm2 and thus represents an “infinitely thick layer” 
of C-14.

Standard Exposure and Processing.
About 1 sq. cm. of the polystyrene foil was used as a standard 

in all cases described below. This standard was laid on the 
NTB-2 plates and covered with a piece of clean glass on which 
a 50 g load was placed. The exposure time was cither 50 min., 
100 min. or 150 min. throughout, because exposure for more 
than 150 min. would give rise to too many tracks per field (cf. 
below).

The NTB-2 plates were developed for 8 min. in a D-19 
developer at 19—20° C, then fixed for 30 min. in 30 °/0 hypo, 
and washed for approximately one hour in lap water. The plates
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were rinsed in distilled water and dried in a horizontal position 
at room temperature. Finally, the exposed area on each plate 
was covered with balsam and a cover glass, 150—175 microns 
thick.

Track Counting Technique.
The tracks were observed in a Leitz Ortholux microscope, 

transmitted light, with 10 X oculars and a 45 X objective. 
One ocular contained a square net micrometer (eyepiece reti­
culum) subdivided into a hundred small squares. The field 
circumscribed by the square net was in most cases 125x125 
square microns.1

It was found impossible accurately to localize a field to be 
counted by vernier readings of the movable stage alone. If not 
characterized by typical landmarks, a given field could not be 
found again with certainty after the plate had been moved on 
the stage. Also, there was no definite proof that the position of the 
plate under the microscope remained exactly the same during 
counting of a given field. In order to compare, for example, the 
counts obtained by different investigators, it was found necessary 
to establish accuracy of placement within a few microns and, 
therefore, characteristic landmarks were used as points of 
reference. Every plate registers a few alpha tracks, the end 
points of which may serve for exact orientation. Since the plastic 
box used for exposure was contaminated with traces of an alpha 
emitter, as a rule about 10—20 alpha tracks were registered 
within 1 sq. cm. of the image (and a similar amount in other 
areas of the plates).

Before the fields to be counted were chosen, the boundary 
of the image was measured up on the stage of the microscope 
and a ten times enlarged picture of the image was drawn. The 
positions of a number of alpha tracks located in the central part 
of the image (at least 500 microns from the edge) were chosen 
for orientation of the fields to be counted. One end of an «-track 
can be brought to coincide with one corner of the square reti-

1 In the course of this study, three different microscopes of the same type, 
and with corresponding optics, were used. It was discovered later that the field 
sizes were not identical. Uncertainty as to the actual field size during counting 
of all series-1 plates has caused us to omit this series in the comparison between 
batches.
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culuni to an accuracy of 1 micron in cither direction. In the 
same way, background fields situated several millimetres away 
from the image and to all four sides of the image, were identified 
by landmarks.

The choice of fields for counting within a given image is 
random, as the occurrence of the landmarks is random. The 
question remains, however, whether each landmark should 
serve to locate one field or whether—at the most—it can be used 
to describe the position of four adjacent fields. The result of 
different groupings is discussed below.

The most convenient and reproducible method of counting 
is to subdivide the field under observation into ten rows of ten 
small squares and to count one row al a time. If the number of 
tracks per field is low—as in a background field or after a 50 min. 
exposure of our standard—it will take an experienced investigator 
between 5 and 15 min. to count one field. As the number of 
tracks increases, it becomes increasingly cumbersome to count 
(15—30 min./field with 50—100 tracks/field). Also, at high track 
density, it becomes very difficult to disentangle the complex track 
patterns.

Identification of a “Track”.
Electron tracks in photographic emulsions are characterized 

by their irregular zig-zag path. Moreover, it is typical of these 
tracks that the grain spacing in the beginning of the tracks is 
wider than towards their end, when the particles have given off 
most of their energy by collision. The tracks observed in the 
NTB-2 emulsion consisted on the average of six grains, tracks 
up to ten grains long did occur.

A photographic emulsion always shows some developed 
grains—fog or background—even if the emulsion has not been 
exposed to irradiation from a radioactive substance. Some of 
this background which is due to cosmic radiation will appear 
as electron tracks similar to those produced by carbon-14 betas. 
Fog due to chemical or mechanical effects, however, appears as 
randomly distributed grains. With increasing fog, there is thus 
an increasing probability for three or more grains to fall “in a 
line”, simulating a track. It was decided to consider four grains 
in a line a minimum requirement for the track pattern. Thereby, 
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the much more frequent accidental groups of three grains are 
not included in the track count. On the other hand, the shortest 
tracks produced by low energy beta particles will thus not be 
counted. Because of the shape of the energy distribution curve 
for the beta spectrum of radio carbon, the track count will be only 
a few per cent too low due to the mentioned minimum requirement.

Outline of Special Problems.

Besides the efficiency of the NTB-2 plates, i. e., the number of 
tracks registered from a source of given strength, and the relation 
between track count and exposure time, it is of paramount 
interest to investigate the reproducibility of the track count on 
different plates from the same batch and from different batches. 
Finally, external conditions during storage may affect the pro­
perties of the plates and ought to be investigated.

Obviously, however, an interpretation of results obtained by 
visual counting of tracks under the microscope must be based 
on a careful investigation into the reproducibility of the data 
obtained in repeated countings of a given field by one and the 
same investigator, and by different investigators confronted with 
the same field. This check was made throughout the present 
study; the results obtained were considered so important that 
they are presented in some detail. They demonstrate very clearly 
that the study of the properties of the plates is intimately connected 
with a study of the counting ability of the investigator. An attempt 
has been made to determine the relative sizes of the errors arising 
from the various sources.

Results.
Eastman Kodak plates of the type NTB-2 from five different 

factory batches, received in five shipments over a period of two 
years, were studied. The batches are designated, in order of 
receipt, series 1 to series 5.

The analysis of the results of track counts (see Tables 1 and II) 
is based on the counting data of four different investigators, 
denoted as A-B-C- and D. Only one of them, investigator B, has 
counted fields from all images included in the study. Investigators
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* undried. f dried.

Table 1.
Counting Data from Plates of Series 1 and 2 (cf. the text on 

pp. 13 and 14).

1 2 3 4 5 6 7 8

Series Plate

Days 
between 
arrival 
and ex­
posure

Exposure 
time in 

min.

Number 
of ex­
posed 
fields 

counted

Mean 
exposed 

count per 
(100)2//2

Net mean 
count 

per 
(100)2 /z2

S. E. of 
net mean 
count per 
(100)2/i2

1 10 2 50 13 32.9 22.0 2.97
1 15 3 50 28 34.5 24.5 1.19
1 3 1 100 32 65.4 51.0 3.29
1 13 3 100 36 67.1 55.5 4.77
1 5 1 100 7 85.3 69.4 5.12
1 17 4 100 6 74.5 62.1 3.72
1 18 4 100 7 88.4 78.8 4.94
1 19 4 100 5 69.4 57.7 4.73
1 11 2 150 24 112.0 99.3 7.49
1 12 2 150 6 101.1 88.4 5.15
2* 19 2 50 12 27.2 22.8 1.26
2* 23 11 50 12 19.8 14.3 0.92
2* 18 2 100 12 38.7 33.8 1.97
2* 34 9 100 12 42.3 34.3 0.83
2* 32 7 150 12 43.9 38.3 1.64
2* 36 11 150 12 45.3 38.0 1.46
2f 37 18 50 12 34.3 24.0 1.02
2t 42 24 50 12 35.0 23.9 1.07
2f 29 14 100 12 60.0 51.2 2.66
2f 42 24 100 12 49.0 38.0 1.32
2t 41 23 150 12 78.5 67.5 2.22
2t 1 42 24 150 12 66.7 55.7 1.69

Column 1: serial number; the series are designated in order of receipt.
Column 2: plate number; the plates are designated in order of use.
Column 3: time in days which elapsed from arrival of the plates in Copenhagen till their 

actual use.
Column 4: exposure time in minutes. Multiple exposure plates have been exposed for 

varying lengths of time in different areas of the same plate (cf. p. 15).
Column 5: number of fields counted within the image.
Column 6: mean number of tracks counted per (100)2/z2 of the image; this figure equals 

the mean of the track counts actually obtained, divided by the ratio: field 
size in sq. microns/(100)2 sq. microns.

Mean of X,- = X;

Column 7 :

Column 8:

net mean track count per (100)2/z2; this figure equals the mean track count 
per (100)2 sq. microns of the image minus mean track count per (100)2 sq. 
microns from background areas of the same plate.
standard error of the net mean track count per (100)2/z2. Standard error = s 
(of net mean count per (100)2 sq. microns)

S. E. T 2mean exp. count + s2mean background count 
per (lOO)2^2 per (lOO)2^2

Variance of the mean of X(-
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Table 2.
Counting Data from Plates of Series 2-5, as depicted in Fig. 1.

1 2 3 4 5 6 7 8

Series Plate

Days 
between 
arrival 
and ex­
posure

Exposure 
time in 

min.

Number 
of ex­
posed 
fields 

counted

Mean 
exposed 
count per 
(100)2 /z2

Net mean 
count 

per 
(100)2 /z2

S. E. of 
net mean 
count per 
(100)2 /z2

2| 37 18 50 12 34.3 24.0 1.02
2f 42 24 50 12 35.0 23.9 1.07
2f 29 14 100 12 60.0 51.2 2.66
2t 42 24 100 12 49.0 38.0 1.32
2t 41 23 150 12 78.5 67.5 2.22
2t 42 24 150 12 66.7 55.7 1.69
3 A 9 3 50 10 15.6 12.3 1.22
3 A 7 2 100 10 33.6 30.1 1.09
3 A 11 3 100 10 36.1 30.3 1.52
3 A 10 3 150 10 40.6 37.9 1.82
3 B 1 15 50 10 17.3 14.1 1.92
3 B 5 43 50 10 19.8 16.2 1.24
3 B 8 59 50 10 21.4 15.5 0.85
3 B 3 22 100 10 42.6 39.0 1.85
3 B 6 43 100 10 47.0 40.5 1.46
3 B 2 16 150 10 60.0 55.4 2.00
3 C 2 4 50 10 16.1 12.3 0.87
3 C 6 9 50 10 19.5 16.8 0.90
3 C 8 10 50 10 16.4 13.9 1.24
3 C 9 15 50 10 16.5 14.6 0.70
3 C 12 37 50 10 18.2 14.9 1.31
3 C 2 4 100 9 33.9 30.1 1.45
3 C 8 10 100 10 29.0 26.5 1.85
3 C 11 22 100 10 29.0 27.4 1.10
3 C 6 9 150 10 52.4 49.7 2.27
3 C 10 16 150 10 53.8 51.1 1.82
1 5 8 50 10 16.5 13.0 0.96
4 6 9 50 10 14.8 12.4 0.75
4 5 8 100 10 29.6 26.0 2.13
4 6 9 100 10 30.0 27.6 1.69
5 5 4 50 10 15.9 13.3 1.29
5 8 5 50 10 14.0 11.9 1.44
5 6 5 50 10 17.1 15.1 0.85
5 6 5 100 10 26.5 24.5 1.86
t dried.
In computing the standard error of the net mean track count for plates from batches 

where there is a tendency for contiguous fields to yield similar track counts, the variance 
of the mean exposed count and of the mean background count was estimated from the 
variance of the means of groups of contiguous fields (exposed or background). The standard 
errors are given here for descriptive purposes, only. In view of suggested differences between 
different plates of a batch and between different batches, they are not considered to be 
valid estimates of the error of the respective mean track counts.
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C and D were students who did not participate in the research 
work proper, but were trained for the special task of track 
counting. The purpose of their participation in the counting was 
for the present authors to gain an impression of the difficulties 
inherent in this work, especially because it requires personal 
judgement and a certain consistency of interpretation.

Reproducibility of counting results.

In order to estimate what proportion of the variability ob­
served in the field counts of one investigator is attributable to 
uncertainty of evaluating a given track pattern, investigator B 
recounted all ten selected fields on each of four different images 
(series 3) after a lapse of several months. This investigator also 
recounted a single field from each of two exposed areas five 
times on five different days to provide an additional check on 
her counting variability.

The variance of the two track counts of the same fields was 
computed for each of the ten fields from each of the four images 
recounted, and the mean of these ten variances from a given 
image was calculated. The results provide estimates of investigator 
B’s average variation in evaluating the track pattern at the expo­
sure levels 50 — 100 — 150 minutes, respectively. The average 
variances found represent, at the 50 min. exposure level, 4 °/0 
of the variance of counts of different fields, 6 °/0 at the 100 min. 
exposure level, and 10 °/0 at the 150 min. exposure level. Thus, 
the variance of recounting given track patterns increases with 
increasing number of tracks per field, not only as an absolute 
value, but also as a percentage of the variance of different fields.

The estimated standard deviation of recounts of fields, the 
square root of the average variance discussed above, appears to 
be a fairly constant percentage of mean track count: 4.5 °/0 on 
the 50 min. exposure level, 4.4 °/0 at the 100 min. exposure level, 
and 3.5 °/0 at the 150 min. exposure level.

The track counts of the single fields counted on five different 
days yield variances smaller than any of the average variances 
of two counts of the same field reported above. Thus, these 
limited observations provide no evidence of a day to day variance 
greater than that included in the estimates given above.
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No recounts by the other three investigators are available. 
Since the variance of the field counts is of the same order of 
magnitude for all four investigators, it is unlikely that the recount 
variation of the other investigators (especially A) is vastly different 
from that of B.

The two most experienced investigators, A and B, showed, 
on the whole, very good agreement. The data give little evidence 
of any overall tendency of one of these investigators to count, 
on the average, higher or lower than the other.1 For seven images 
on plates of series 3, on each of which the same ten fields were 
counted by both A and B, the difference between the mean track 
count of A and of B, in per cent of mean track count, averages 
less than 4 °/0. There is no tendency for the percentage difference 
to increase with increasing track count. This close agreement 
between mean counts of A and B is confirmed by the data from 
the other series.

For the eighteen sets of paired counts, the standard deviation 
of the difference between the counts of the same field by A and B 
ranges from 2 °/0 to 12 °/0 of the mean track count. On the 
average, the standard deviation of the differences between A and 
B is only about 50 °/0 higher than the standard deviation of the 
differences between two counts of the same field by investi­
gator B.2

To summarize: for an experienced investigator, the variation 
in repeated evaluations of the same track pattern at different

1 Heterogeneity of variance was indicated by the data even within a single 
exposure level, so the data from different images could not be pooled. For plates 
of the first two series, the fields counted by both A and B vary in number from 
image to image. For seven images from series-3 plates, the number of fields from 
each image counted both by A and B is ten. The mean of the three mean differences 
was tested by the statistic t. For the three paired means at 50 min., t is 0.4, 
at 100 min., t is — 1.3. The single mean difference at 150 min. is positive.

2 Comparison of the counts obtained by B and D on the first group of plates 
counted by D (largely series 2) reveals a pronounced and consistent tendency of 
D to count (on the average 6 °/0) lower than B. This tendency is not evidenced 
on plates counted subsequently. As investigator D gained experience, he evaluated 
the track pattern differently so as to obtain higher counts. Investigator D never 
attained as good agreement with B as A exhibited during the entire course of the 
study.

Investigator C counted only plates of series 1. Counts of three investigators, 
A, B, and C, are available for nine plates. The mean counts of C seldom show 
good agreement with those of A and B. Investigator C’s mean counts differ on the 
average from those of A and B by two to three times as much as their mean counts 
differ from each other.

No comparative data are available between investigators C and D. 
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times appears to be small. The variance of recounting represents 
an increasing proportion of the investigator’s variation in counts 
of different track patterns from an image as the average number 
of tracks per field increases; but even at 150 min. exposure 
(ca. 80 tracks per held), the variance of recounts accounts for 
only 10 °/o of the variance of counts of different fields. The stand­
ard deviation of recounts—which is the pertinent statistic in 
terms of error—shows, however, no tendency to increase with 
increasing track count, and represents only about -1 °/0 of the 
track count.

Two of the four investigators showed on the whole very good 
agreement on counts of the same fields. For the great majority of 
images, there is no consistent tendency for one of these invest­
igators to count on the average higher or lower than the other, and 
their counts of the same field differ by only about 1.5 times as 
much as do two counts of the field by the same investigator.

Homogeneity of the plates.

When a number of fields within the image from a standard 
source are counted, the scattering of the results around a mean 
value is a function of (A) the statistical fluctuation in the number 
of disintegrations actually taking place per time unit, (B) the 
uncertainty of evaluation as discussed above, and (C) the error 
in the reproduction of the track pattern, which includes the effect 
of inhomogeneity within a plate. If fields from images on different 
plates are considered, lack of homogeneity from plate to plate 
within the same batch, and also variations in sensitivity from 
batch to batch would introduce further variability. Homogeneity 
in this sense is synonymous with uniformity of sensitivity. If the 
photographic emulsions are homogeneous, any unit area at one 
end of a plate will be as sensitive to incident radiation as a cor­
responding area at the other end of the same plate, or on a 
different plate from the same batch, or from another batch.

(i) Homogeneity within a plate.
Striking inhomogeneity within one and the same plate was 

observed on plates of series 1 and on some plates from later 
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series. On five of the nine plates of series 1, a large number of 
exposed and background fields was counted in groups of four 
contiguous fields about a common center (the landmark, cf. p. 5). 
Scanning of the individual track counts of a given investigator 
from a given image revealed a striking tendency for contiguous 
fields to yield similar track counts, which was confirmed by 
analysis of variance. This phenomenon appears consistently in 
counts from images of this series and, to some extent, in the back­
ground counts as well.

In scries 2—5, the exposed fields were counted in groups of 
two contiguous fields, the background fields usually in groups 
of four.

The majority of the plates of series 2 show no tendency for 
contiguous fields to yield similar track counts. However, in this 
series and also in scries 4 and 5, a few sets of counts evidence 
this grouping effect to a “significant” degree.1 By contrast, the 
extensive data from series 3 give no indication of the existence of 
such a grouping effect. The corresponding background counts 
suggest that contiguous fields may be more similar than fields 
in widely separated areas of the plate. The data, however, are 
inconclusive.

On the basis of the actual counting experience, the invest­
igators maintain that subjective factors cannot explain this tend­
ency for contiguous fields to yield similar track counts. During 
the counting of plates of series 1, the only batch in which the 
phenomenon is consistently present, areas as large as a quarter 
of a field were frequently observed to be completely devoid of 
tracks. In later series, this phenomenon wàs observed in rare 
cases, only. Wherever this grouping effect exists, a lack of 
homogeneity within very small areas of the plate is suggested.

In the light of these findings, it seems advisable to count 
separately located fields rather than groups of contiguous fields 
in order to obtain a maximum amount of information from a 
given amount of counting labor. Therefore, in series 2—5, the

1 For four of the five images from series 1, the counts of investigator B yield 
variance ratios (F) which are significant at the 5 °/0 level of confidence or better. 
The same is true of two of the five sets of background counts. In addition, three 
out of twenty-two sets from series 2 (two of which occur on the same plate), one 
out of six sets from series 4, and one out of seven sets from series 5 yield F ratios 
which are significant at the 5 °/0 level of confidence. For all of these series, statistical 
analyses of the counting data of the other investigators give similar results. 
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exposed fields were counted in groups of two contiguous fields, 
the backgrounds usually in groups of four.

(ii) Homogeneity of plates from the same batch.
In order to study the homogeneity—or uniformity of sensitivity 

—from plate to plate of the same batch, the net mean track 
counts from all images of the same exposure level were compared.

The data from series 2 (dried and undried groups considered 
separately) suggest that within this batch some plates, or areas 
of them, differ from others in such a way that they record as 
tracks differing percentages of the radiation received.1

Because of variations in the handling of plates of series 3 
and other considerations, statistical analysis of this batch of 
plates is not informative.

Series 4 and 5 comprise only a small number of plates and 
no evidence of the existence of differences between plates within 
these batches was found.

(iii) Sensitivity from batch to batch.
Figure 1 presents the net mean track counts of investigator B 

from all images studied, except those from plates of series l2 
and series 2 undried. The means from plates of series 2 dried 
are consistently higher at every exposure level than the means 
from plates of series 3, 4, and 5.

This phenomenon is confirmed by the data from the other 
investigator (D).

This finding indicates that different batches of plates may 
differ appreciably in average sensitivity, and it seems not justified 
to assume that NTB-2 plates from different batches will yield 
the same number of tracks per field for a given exposure to the 
same source of radiation.

1 Counts from images on two different plates are available at the three 
exposure levels in each group (dried and undried). In each case, the mean difference 
was tested by the statistic t. For investigator B, three of the six mean differences 
(at 50 min. in the undried group, at 100 min. and 150 min. in the dried group) 
are significant at the 2 °/0 level of confidence. Counting data from the other invest­
igator who counted this series yield almost identical results. The possibility of a 
somewhat reduced reliability of this test when applied to these data must be 
considered.

2 Cf. footnote on p. 5.
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Fig. 1. Mean net track count per field ((100)2/z2) versa exposure time in minutes, 
series 2; £ series 3;JIO series 4; X series 5.'

Investigation of saturation phenomena (H and D relation).

The dependence of track count on exposure time was studied 
applying the exposure times 50 min., 100 min., and 150 min. 
The experiments were made in two different ways, namely, 
either by exposing three plates from the same batch, or by 
exposing different areas of the same plate, for increasing periods 
of time. The limitation to three different exposure times was 
necessary because counting is too laborious to allow of a much 
greater number of images to be evaluated.

The results are illustrated in Fig. 1.
When each batch of plates was considered separately, it was 

found that the means of the three exposure levels deviate some­
what from the 1:2:3 relationship, and that deviations occur in 
both directions.

The largest deviation from the 1 :2:3 relationship is evidenced 
by the data from the undried plates of series 2, and is in the 
direction indicating the presence of a saturation phenomenon, 



16 Nr. 9

i. e., the net mean track count increases less than would be ex­
pected with increasing exposure time. For the remaining five 
groups of plates, two exhibit deviation in the direction of satura­
tion, three show deviation of comparable magnitude in the 
opposite direction.

Three of the seven single plates on which exposures at two or 
three different levels were made (so-called multiple exposure 
plates) show deviations from the 1:2:3 relationship almost as 
large as the largest observed in the means of the batches. However, 
while two of these plates exhibit substantial deviation in the direc­
tion of saturation, the deviation of the third is of comparable 
magnitude in the opposite direction.

Thus, the data as a whole give little evidence that saturation 
has been reached. In view of the findings as reported in the 
previous sections, the sizable deviations from the 1:2:3 relation­
ship observed within some single plates may well be due to 
inhomogeneity within the plate.

Efficiency of the plates.

When a source of beta particles is brought in contact with 
a photographic emulsion, only slightly less than 50 °/0 of the 
disintegrations taking place in the source will be “seen” by the 
emulsion due to geometric conditions. If the source is thick as 
compared with the range of the beta particles, an additional 
correction for self-absorption must be applied. In the present 
case, the source was an “infinitely thick layer” of C-14 labeled 
polystyrene and therefore, as is well known, only about 1/5 of 
the disintegrations in the direction of the detector will reach the 
emulsion. Taking the correction for geometry and for self­
absorption into account, we can expect at the most 1/io of the 
disintegrations taking place in the foil to be registered by the 
photographic plate.

Some additional loss may occur due to the interspace (of 
about 1—2 microns) between source and emulsion despite the 
fact that these surfaces are pressed together, and it is also possible 
that particles traveling in the emulsion very close to the surface 
may not be registered as tracks.

We thus arrive at a figure for the number of tracks to be 
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expected per unit field (100 X 100 square microns) of the order 
of 10 °/0 (or somewhat less) of the disintegrations taking place 
in a piece of the foil of the same surface dimension and a thick­
ness corresponding to the range of the C-14 beta particles.

The standard used contains 0.6 microcuries of C-14 per 
sq. cm., and, thus, 650 disintegrations take place in the course 
of 50 min. in 100 X 100 sq. microns of the foil. The order of 
magnitude of the track count should therefore be 65 tracks per 
unit field after 50 min. exposure (or somewhat less).

The actual finding, as illustrated in Fig. 1, is lower than the 
above estimate by a factor of about 4. The discrepancy may be 
due to the fact that the C-14 content of the standard foil is not 
too well-defined. It is also possible—as mentioned above—that the 
contact between source and emulsion was poorer than anticipated. 
As pointed out by Pelc el. al. , this distance is of great importance. 
Finally, the possibility does exist that the NTB-2 emulsion used 
did not register all incident particles as tracks, in other words, 
the efficiency of the emulsion when applied in the manner 
described here is not one hundred percent. It is worth empha­
sizing that, in this sense, efficiency is not synonymous with 
sensitivity, a concept which has been defined and is being used 
differently.4^

In experiments carried out with the same standard source 
placed on an Ilford G-5 emulsion under otherwise identical con­
ditions, the G-5 emulsion registered on the average 45 tracks per 
unit field after 50 min. exposure, i. e. about 2.5 times more than 
did the NTB-2 plate.

Effect of storage conditions.

The effect of storage conditions, i. e., temperature, shielding, 
and humidity, on the efficiency of the plates was studied. It is 
generally assumed that the lifetime of the plates is prolonged by 
storage in the cold, that high humidity promotes latent image 
fading, and that storage in a lead (iron) shield of 5—10 cm 
thickness will reduce the accumulation of background, especially 
in the case of emulsions which register electrons from cosmic 
radiation as tracks. Some of the experiments were extended over

Dan. Mat. Fys.Medd. 30, no.9. 2 
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a period of l1/2 months, and not only llie net track count, but 
also the increase in the background count was considered to be 
of interest.

The plates of series 3 (a total of three dozen) were stored in 
different ways in order to study the effect of temperature and

days a/der orr/va/ / '/? C.
Fig. 2. Increase in track background count per field ((100)2/z2) versa time, expressed 
in days after arrival of the plates in Copenhagen. The day of manufacture is not 

stated by the producer, shipment took 5 or 6 days.

shielding over an extended period on the properties of the 
plates. The plates of group A were used within three days after 
arrival, those of group B were stored at + 5° C in the refrigerator, 
some for as long as 59 days. The plates of group C were stored 
at room temperature (20°—22° C) inside a 20 cm iron shield, 
some for as long as 37 days. Comparison of the data from these 
three groups reveals no tendency for efficiency to decline with 
storage under either condition.



Nr. 9 19

At every exposure level, all plates of group B yield higher net 
mean track counts than any plate of group A. The mean of all 
group-B plates is higher at every exposure level than the corre­
sponding mean of group-C plates. Comparison of group-A plates 
with group-C plates yields no consistent difference. The only large 
difference observed, that between the 150 min. means of the 
two groups, may be due to differences between plates, as found 
in other batches.

Fig. 2 shows the increase in background count with time on 
plates of series 2, which were not shielded during storage. The 
plates of group C, series 3, stored in a massive iron shield, show no 
increase in mean background count with time. The background of 
series-3 B plates stored in the refrigerator, but unshielded remained 
lower than did that of series 2, although storage was extended 
over 59 days.

Drying with silica gel prior to exposure was first used with 
the plates of series 2. At each exposure level, the net mean track 
counts of dried plates of series 2 are higher than those of undried 
plates. Application of the theory of combinations reveals that the 
probability of obtaining such results by chance, i. e., if the drying 
process actually had no effect on the mean track count, is 1 in 
108. Therefore, it seems reasonable to conclude that careful 
drying of the emulsion prior to exposure does increase the 
efficiency of the plates of at least some factory batches.

Discussion.
It has been the aim of the present study to investigate the 

applicability of NTB-2 plates to quantitative ß-track autoradio­
graphy, for example in connection with tracer studies on biological 
specimens.

For practical purposes, tissue sections, 5—10 microns thick, 
will be floated on the plates, for example, in the manner described 
by Evans3), and the autoradiogram be observed in the emulsion 
under the tissue. When using this technique, it must be kept in 
mind that the sensitivity of the plates is affected by changes in 
humidity and, therefore, the plates must be dried carefully after 
having been immersed in water. When most of the moisture has 
been removed by drying with a fan, the plates must be dried 

2*  
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more thoroughly, e. g., with silica gel. After too rigorous drying, 
the emulsion begins to peel otT, and it will largely be a matter of 
trial and error to find optimum drying conditions. As long as the 
humidity of the plates is controled, storage conditions are not 
critical. The use of a shield is advantageous because accumulation 
of the track background thereby is suppressed.

Fig. 3. Photomicrograph of a C-14 beta track pattern in NTB-2 emulsion. Depth 
of focus about 3 microns.

Exposure time must be such that the number of tracks does 
not exceed c. 100 per IO4 sq. microns. At a higher level, counting 
becomes too difficult. Up to this track density, the number of 
tracks per field versa exposure time appears to be a linear relation.

Presupposing standardized handling of the emulsion, the 
reliability of the counting results depends on the experience of 
the investigator and on the properties of the plates.

The investigators must train themselves and establish 
well-defined criteria on which the interpretation of the track 
pattern is based. Track counting is not an easy technique, 
especially because it requires the investigator’s full attention and 
consistency of evaluation. Fatigue is a source of error not to be 
underestimated. Investigators C and D, participating in this study, 
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were not particularly interested in perfecting themselves or in 
improving the method. This is probably part of the reason why 
their counting results were less reproducible than those of invest­
igators A and B.

In the present study, the standard deviation of recounts of 
fields was about 4 °/0 of the mean track count. The average 
difference between the mean track counts obtained by the two 
main investigators counting the same ten fields of a given image 
was about 4 °/0. An estimate of the standard deviation of single 
net track counts of one investigator (B), i. e., the count from one 
exposed field less the count from one background field as calcul­
ated from the average of the variances within individual plates 
of a series is given in Table 3.

Table 3. Estimated Standard Deviation of Single Net Counts 
(°/0 of net mean track count).

50 min. 100 min. 150 min.

series 1....................................................... 38 % 20% 18%
series 2, dried.......................................... 20 % 12% H %
series 3, 4, and 5................................... 26 % 16% 13%

The lack of homogeneity of some of the plates is a serious 
problem. If the mean track count of fields from a given image is 
used to estimate the amount of radiation received—as in com­
parisons between different regions of one image, or between 
images obtained from unknown sources of radiation—the error 
calculated from variance of track counts within the exposed areas 
as mentioned above may seriously overestimate the reliability of 
the mean count obtained. The differences in sensitivity which 
were found to exist between different areas of some plates and 
between plates of some batches are not included in the errors 
given in the above table. They contribute additionally to the 
uncertainty of the final results. Differences observed between 
plates are of such magnitude as to make the error of net track 
counts from different plates 1.5 to 2 times the error for fields 
from the same plate. The use of only one plate for all images— 
even where feasible—cannot be assumed to eliminate this addi­
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tional source of error. A further decrease in reliability of the 
results may arise if images made on plates from different batches 
are compared.

In practice, this means that a comparison of net track counts 
per field under different regions of a tissue section can only lead 
to reasonably accurate results if the regions to be compared are 
so large that a suitable number of scattered fields can be counted 
in each region. In view of the inhomogeneity observed within 
very small areas of some plates, it is advantageous to count 
separately located fields wherever possible. Comparisons based 
on single field counts will require the study of serial sections, 
preferably mounted on one and the same plate.

Very little quantitative information on the resolution in a beta 
track autoradiogram can be obtained from standard exposures 
with a source of infinitely thick layer. In a medium of density 1 
(polystyrene, paraffin, tissue) the range of C-14 betas is about 
30 microns, in emulsion (density 4) it is correspondingly less, 
and in air it is about 3x 104 microns. When a thick standard 
source is pressed against the emulsion and the interspace is kept 
small, the beginning of the tracks will not be too distant from 
the particles’ “points of origin’’ in the source. With thin tissue 
sections placed on the emulsion, particles emitted in the direction 
away from the emulsion can easily reach a medium of low 
density (air) and can be scattered back into the emulsion, forming 
a track at considerable distance from their points of origin. It 
is very tempting, but definitely not justified, to project the starting 
point of a track as seen in the microscope vertically into the 
superimposed tissue, assuming that the track originates from this 
point in the tissue. Systematic investigations into this problem 
are in progress. The authors’ estimate of the resolution obtained 
when tissue sections containing a C-14 labeled compound are 
mounted on NTB-2 plates is about 15 microns.
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Introduction.

It is a well known consequence of basic assumptions in the 
general theory of relativity that the rate of an ideal standard 

clock moving with the velocity v through a gravitational field 
with the potential / is determined by the formula

dr = d/1 1 + 2 //c2 — p2/c2, (1)

where r is the proper time of the standard clock and I is the 
coordinate time in a time-orthogonal system of space-time co­
ordinates1). Equation (1) is equivalent to the statement that the 
proper time of a particle is a measure of the length of the time 
track of the particle in (3 + l)-space. It follows directly from 
the principle of relativity and the equivalence of gravitational 
fields and “acceleration fields”, together with the assumption 
that the rate of the standard clock is equal to the rate of the 
clocks in a local rest system of inertia. The last assumption im­
plies that the acceleration of an ideal standard clock relative to 
a system of inertia has no influence on the rate of the clock, 
which thus is entirely determined by its velocity.

The formula (1) is closely connected with the well-known 
formula for the red-shift of spectral lines emitted by atoms situ­
ated al places with a negative gravitational potential, and gives 
the clue also to a solution, of the so-called clock paradox2). 
On account of the inherent invariance of the length of the time 
track of a particle, it is clear beforehand that no real contradict­
ions connected with the rate of moving clocks can ever arise in 
this theory.

However, just for this reason, students of the theory of rela­
tivity very often do not find the usual solution of the clock 

1*
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paradox satisfactory. They maintain—rightly of course—that one 
has made just such assumptions about the behaviour of clocks 
in gravitational fields that no paradox can occur, and they would 
like to see a derivation of (1) on the basis of the dynamical laws 
governing the functioning of a clock or at least of a simple model 
of a clock. This desire is of a similar kind as that which, in the 
early days of relativity theory, led to attempts at deriving the 
Lorentz contraction of moving rigid bodies from the laws govern­
ing the constitution of solid bodies. Against such attempts it has 
been objected that the effects in question are much more ele­
mentary and much more directly connected with the principles 
of the theory than the laws from which they are proposed to be 
derived, so that the behaviour of moving rigid bodies and stand­
ard clocks rather represents a challenge to the theory of the 
constitution of matter and to the dynamical laws underlying 
the functioning of clocks. This is certainly a sound objection 
in the case of the contraction phenomena, since we do not at 
the moment have a consistent relativistic atomic theory of solid 
bodies from which the contraction phenomenon could be de­
duced. However, the situation is somewhat different in the case 
of the formula (1) for two reasons. Firstly, a clock may be in 
a certain sense regarded as a much simpler system than a measur­
ing rod, since, for instance, any macroscopic particle performing 
harmonic oscillations around a centre under the influence of 
elastic forces may be used as a clock. Thus, in calculating the 
rate of such a clock, we can neglect all qu antal effects and we 
need only a knowledge of the dynamical laws governing the 
motion of a macroscopic particle acted upon by an external gravi­
tational field and by a given non-gravitational force. Secondly, 
as shown by Einstein, Infeed, and Hoffmann3), these dynam­
ical laws follow from the gravitational field equations without 
further assumptions. In particular, it was shown by Infeed and 
Schied4) that the time track of a freely falling test particle (that 
is, a particle of vanishing mass) in an arbitrary gravitational 
background field, is bound to be a geodesic line in the space­
time continuum of the background field in order that the field 
equations can have solutions. This interesting theorem, according 
to which the equations of motion appear as a kind of integrab­
ility conditions for the field equations, is closely connected with 
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the non-linear character of Einstein’s field equations. It is true 
that the correct equations of motion for a freely falling particle 
had been derived already long ago on the basis of the principles 
of relativity and equivalence, but with the extra assumption that 
the equations of motion do not depend on the second derivatives 
of the metric tensor with respect to the space-time coordinates. 
Fhe above mentioned investigations showed, however, that the 
particle dynamics is intimately connected with the foundations 
of the theory of gravitational fields and, at least from a didactical 
point of view, it may now be of some interest to derive Eq. (1) 
from the dynamics of a simple model of a clock.

Such a derivation also will allow us to formulate certain 
requirements as to the construction of a clock in order to make 
it an ideal standard clock in the sense of the general theory of 
relativity. It will turn out, of course, that a real clock can only 
approximately be considered ideal and that the degree of accu­
racy with which il may be said to have this property depends 
on the properties of the gravitational field in which the clock 
is placed. For a real clock, the formula (1) is therefore also only 
approximately true.

In recent years, the construction of accurate time measuring 
instruments has made great progress and the different “atomic 
clocks” constructed in various laboratories have an accuracy 
by far exceeding the accuracy of the earth’s rotation. The time 
does not seem far when the accuracy of such clocks is so high 
that a direct verification of Eq. (1) is possible by comparison of 
the rates of two clocks situated at places of different gravitational 
potential on the earth. It is therefore also of interest to verify 
that the above mentioned conditions for the validity of the for­
mula (1) are satisfied by these clocks.

These problems are dealt with in Section 6. Section 1 con­
tains a review of the three-dimensional formulation of particle 
dynamics given elsewhere for gravitational fields with zero vector 
potentials, while the discussion of the most general case is given 
in the Appendix. The remaining sections are devoted to mainly 
didactical remarks illustrating the close relationship between the 
formulae for the mass and energy of a particle in a gravitational 
field and the Eq. (1). In Section 2, the formula for the gravita­
tional mass of a particle is illustrated by a discussion of a few 
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“gedanken”-experiments by which this formula, in principle, 
could be checked. Section 3 presents a similar discussion for 
the inertial mass. Section 4 brings a derivation of the red-shift 
formula which is more closely related to the actual mechanism 
of emission of photons in atomic transitions than usually 
given in the current text books, the derivation being based 
directly on a formula describing the influence of gravitational 
fields on the level scheme of atomic systems. Finally, in Section 5 
some of the results obtained in section 3 for the non-relativistic 
oscillator are derived also for a system with large particle velo­
cities.

1. Particle Dynamics.

fhe motion of a freely falling particle in an external gravi­
tational field is characterized by the statement that the time track 
of the particle is a geodesic line. Let us, for simplicity, assume 
that the system S of space-time coordinates (.r!) = (xl, cf) is 
time orthogonal*,  so that the metric tensor f/ioe, entering in the 
interval

ds2 = gtk dxidxk, (2)

satisfies the three equations

9n = 9u = (3)

(Latin indices are running from 1 to 4, Greek indices from 1 to 
3, only). Then, the spatial line element defining the geometry 
in the three-dimensional space of our system of reference is 
simply

= 7«^^ with = (/tx, (4)

and the dynamical action of the gravitational field is determined 
solely by the scalar gravitational potential % = % (xl, t) defined by 

9^ — (1+2%/c2). (5)

It is now easily seen5) that the equations of a geodesic in 
(3 + l)-space are equivalent to a set of equations of motion

* By means of the formulae developped in the Appendix all the considera­
tions of the present paper may easily be carried through also in the most ge­
neral case.
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in 3-space, which can be written in the form of a three-dimen­
sional vector equation. Let u be the three-dimensional velocity 
vector of the particle with the contravariant and covariant com­
ponents zz*  and zz(, respectively, defined by

(6)

Further, let /h0 denote the proper mass of the particle as measured 
in a rest system of inertia; then we define the momentum vector 
p of the particle by the vector equation

p = mu, (7)

where the factor of proportionality—the inertial mass of the. 
particle in the gravitational field—is given by

nz
m0

J/1 + 2yjc2- zz2/c2
m0-r. (8)

Here, zz2 = is the square of the velocity vector
and

|/1 + 2 %/c2— zz2/c2 (9)

is the generalized Lorentz factor.
The equations of motion then take the form of a three- 

dimensional vector equation

The left-hand side of this equation is the covariant time 
derivative of the momentum vector defined by

dcPi
dt

dPi 1^/xA « A--------------- - zz p 
dt 2 dx (H)

while the right-hand side represents the gravitational force
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K = — m grad /. (12)

The latter is proportional to the negative gradient of the gravi­
tational potential, the factor of proportionality—the gravitational 
mass—being equal to the inertial mass (8). The last term in (11) 
is due to the use of curvilinear coordinates in 3-space and is 

necessary in order to make a vector under spatial coordinatedt r
transformations.

The equations (10) have the form of usual equations of 
motion in which the change in the momentum vector p per unit 
time is equal to the force acting on the particle. They may also 
be written in Hamiltonian form with the Hamiltonian or the 
total energy H of the particle in the external gravitational field
given by6>

m0c2(l +2//c2)
H = . ■ = m c2. (13)

|/1 + 2 %/c2 — u2/c2
Here,

c' = c]/l + 2 x/c2 (14)

is the velocity of light c — at a place where the gravitational 

potential is /7>. Eq. (13) is the generalization of Einstein’s 
energy-mass relation in the presence of gravitational fields. From 
(7), (8), and (13), we get 

(15)

where |^>|2 = pLpL is the square of the momentum vector. Eq. 
(15) is the generalization of the usual energy-momentum relation 
for a free particle. In a static field, where % = % (æf) is time­
independent, the energy H is a constant of the motion.

When the particle is acted upon by a force {y, besides the gravi­
tational force K, we have to replace the right-hand side of (10) 
by the sum K + $ of the two forces. Hence,8)

(16)
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For a force {y of the usual type, which does not change the 
proper mass ih0, the covariant components A, are connected 
with the generalized Minkowsky four-force Ft by the relation

F being the generalized Lorentz factor (9). In a static gravita­
tional field, the energy conservation law takes the form

Derivations of the equations (6)—(18) are found in loc.cit. 
5>—8). \ short derivation of the corresponding relations for the 
more general case, where (3) does not hold and where therefore 
the dynamical action of the gravitational field is described by a 
vector potential as well as by the scalar potential, is found in 
the Appendix to the present paper.

(20)

2. Gravitational Mass.

By putting u — 0 in (8) and (13), we get the following ex­
pressions for the rest mass m0 and the rest energy Ho of a particle 
in a gravitational field:

(19)

= /n0c2|/l + 2 %/c2 = m0-c'2.

Hence, the mass of a body is slightly smaller on the top of a 
mountain than at sea level, and for the rest energy it is the other 
way round. Although this variation of the mass is very small 
(the variation of //c2 is of the order of 10—12 between the top of 
Mount Everest and sea level), it may be of didactical interest to 
discuss by which experiments the mass (19) in principle could 
be measured. In this discussion, we shall for simplicity assume 
that the field is static. Clearly, it will not do to weigh the
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particle by means of a balance, since the mass of the weights will 
vary with / according to exactly the same formula (19). A 
balance can therefore only be used for measuring the proper 
mass m0. On (he other hand, if the particle is attached to the end 
of a string of a given length I, the pendulum thus formed will 
have a period 7’ which will depend solely on the “gravitational 
acceleration”

G = |—grad/|, (21)

al least for small amplitudes and small velocities in the oscilla­
tions. Indeed, with these assumptions, the mass ni may be 
treated as a constant, and it will then drop out entirely in the 
equations of motion (10). Further, if the region in space where 
the oscillations lake place is sufficiently small, we can locally in­
troduce Cartesian coordinates ,r, y, z (or rather a geodesic system 
of space coordinates in which the metric tensor ylx may be treated 
as constant equal to inside this region) and, for oscillations 
along the .r-direction, sav, the equations of motion (10) reduce 
to the usual equation of motion for a pendulum

(22)

Hence, we get the usual formula for the period

T=2a\l/G (23)

and measurements by means of a pendulum can therefore only 
lead to a determination of the gravitational acceleration or the 
gradient of / at an arbitrary point.

In order to measure m0, it is obviously necessary to use an 
apparatus in which the particle is acted upon by a non-gravita- 
tional force which counterbalances the gravitational force. For 
instance, we may use a spring-balance, where the noil-gravi­
tational force is an elastic force $ proportional to the elongation
s of the spring:

A = ks. (24)

When the spring-balance has come to equilibrium, u = w = (), 
and the left-hand side of (16) vanishes. Thus, we get from (12), 
(16), (21), and (24) the equation
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m0 G = ks, (25)

from which we can determine in0 when G, k, and s are known.
However, it must be noted that the elastic constant k itself 

depends on the gravitational potential / according to the formula

k = k[l + 2 %/c2, (26)

where k is the value of the elastic constant when the spring is 
placed at rest in a system of inertia. This fact requires a re­
gauging of the spring-balance when it is used at places with 
different gravitational potentials.

To prove the relation (26) we have simply to make a trans­
formation from the system of coordinates S : xl — (x, y, z, ct) 
to a system S : (x$) which is a local system of inertia at rest rela­
tive to S at the space-time point considered. The corresponding 
transformation equations9* for the Minkowsky four-force are

F, = A, F, = F4|/'l + 2z/c+ (27)

Since w = ù — 0 in our case, we get by (17), (9), and (27), 
remembering that / = 0,

8 = S/F= «V1 +2“7/?> (28)

Å’.s = ks |/ 1 + 2 %/c2. (29)

Further, since the relative velocity of the systems S and S is 
zero, we have

•s = s, (30)

which then leads to the equation (26).

3. Inertial Mass. Harmonic Oscillator.

The mass m0 determined by the equilibrium condition (25) 
is of course the gravitational mass, the inertial mass entering 
only in dynamical problems. As an example, we consider 
small vibrations of the particle attached to the spring-balance
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around the equilibrium position. For sufficiently small ampli­
tudes and velocities in the vibration, the inertial mass m oc­
curring in the vector p on the left-hand side of the equations of 
motion (16) may be treated as constant and equal to the m0 
given by (1 9) with the value of / taken at the equilibrium position. 
Let us further assume that the elastic constant k is so big that the 
gravitational force K is negligible compared to the elastic force $. 
Finally, we may again, for sufficiently small amplitudes, use 
local Cartesian coordinates with the .r-axis in the direction of the 
vibration. Then, the equations (16) take the form of the usual 
equations of motion of a harmonic oscillator

— kx, (31)

x being the distance of the particle from the equilibrium position. 
A solution of (31) is the harmonic oscillation

x — A sin cot (32)
with the frequency

m = \/k/m0. (33)

Thus we have, according to (19) and (26),

co = ]/(7/jii0) (1+2 x/c2) = <ô|/l + 2 x/c2, (34)

where co is the frequency of the oscillator when it is placed al 
rest in a system of inertia. By measuring the frequency of the 
oscillator when placed at different potentials we get a determ­
ination of the inertial mass.

When the oscillating particle carries an electric charge, it 
emits electromagnetic waves of frequency v = and (34)
then expresses the well-known red-shift of light emitted by a 
macroscopic oscillating system situated at a place of negative 
gravitational potential. Of course, the system considered is not 
a good model of a quantum mechanical system like an atom 
emitting spectral lines. However, in the following section we 
shall see that the general formula (20) for the rest energy of a 
particle in a gravitational field provides a simple derivation of 
the red-shift formula applicable also to atomic systems.
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For small velocities we get for the energy (13) of a particle 
moving with velocity n in a gravitational field, to the first order 
in u2/c2,

W=H„ + |nl0u2 (35)

with m0 and Ho given by (19) and (20). Adding to this the elastic 
potential energy of the oscillator,

y = l^r2, (36)

we get the total energy of the oscillator in the gravitational field

E = H + V = nzoc21/1 + 2 //c2 + e, (37)
where

e = -/n0u2 + - Å\r2 = — ÅA2 (38)

is the usual non-relativistic expression for the energy of an oscil­
lator of mass m0, elastic constant k and amplitude A.

We shall now compare our oscillator for a given energy state, 
i. e. a given amplitude A in the gravitational field with the same 
oscillator placed in a system of inertia. From (37), (38), and 
(26) we get

£ — — kA2 J/1 + 2 x/c2 = £ |/1 +2 //c2, (39)

E = (m0 + e/c2) c2|/l +2 //c2 = È )/1 +2 %/c2, (40)
where

È = hioc2 + £, £ = -kA2 (41)

is the energy of the oscillator in the system of inertia. A compari­
son of (40) and (20) shows that the oscillator as a whole has the 
property of a particle at rest in the gravitational field with a 
proper mass

4f0 = m0 + £/c2, (42)
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in accordance with Einstein’s energy-mass relation. This may 
serve as an illustration of the fact that the formula (20) for the 
rest mass of a particle in a gravitational field holds generally, 
irrespective of the nature of the mass of the particle.

4. The Red-shift of Spectral Lines.

According to Bohr’s theory of atomic spectra, the frequency 
of the light emitted in a transition between two stationary slates 
of the radiating atom is proportional to the difference in energy 
of the initial and final states. Therefore, from a didactical point 
of view, it seems most natural to derive the redshift formula by 
a consideration of the influence of the gravitational potentials on 
the energy levels of atomic systems. Let Elt E2, .... /+,... 
be the sequence of values of the total energy of the atom in the 
different stationary states when it is placed at rest in a system 
of inertia. According to Einstein’s mass-energy relation, the pro­
per mass of the atom as a whole in the n’tli stationary state is

X/ow = En/c2. (43)

Therefore, by (20), the corresponding energy of the atom when 
it is placed at rest in a gravitational field must be

En = MOnC21/1 + 2 %/c2 = Ên |/1 + 2 //c2- (44)

For the energy release in a transition between two stationary 
states we then also have

AE = A É I 1+2 %/c2 (45)

which, combined with Bohr’s energy-frequency relation

AE = hv, A Ê = hv, (46)

immediately leads to the redshift formula

v = v\'l + 2 x/c2. (47)

Thus, the energy and frequency of the photons emitted in a 
definite transition by atoms at the surface of the sun and by 
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terrestrial atoms, for instance, differ by the factor | 1 + 2//c2. 
On the other hand, a photon traveling from the sun to the earth 
may be treated as a “freely falling” particle of proper mass zero 
and velocity c = c |/1 +2 //c2. Its energy in the static gravita­
tional field is then constantly equal to hv, which shows that the 
frequency is unchanged during its travel. After arrival of the 
photon at the earth, its frequency may be directly compared with 
the corresponding spectral line emitted by a terrestrial atom.

For m0 —> 0, we get from (15), for the momentum of the 
photon,

where Å = c'/v is the wavelength measured with standard meas­
uring sticks. Further, we gel from (13), for the “relativistic” mass 
m of the photon,

(49)

If we introduce this value for m into the equations of motion (10), 
we get, after dividing by the common constant factor hv,

The equations (5
as derived, for instance, by Fermat’s principle10), determining 
the deflection of light in a gravitational field. In this way, the 
three Einstein effects—the advance of the perihelion, the red­
shift of spectral lines, and the deflection of light—appear as 
consequences of the same ecpiations, the equations of motion 
(10) which, in turn, may be regarded as a kind of integrability 
conditions for the gravitational field equations.

deCuJc'^
dt

with

- (u./c'2) 
dt ‘

1 =
2 dxL c2

_ 1
c2 dxl

(50)

, dxl u — — 
dt

, uLuL = C2 . (51)

are the equations of motion of a light



16 Nr. 10

5. The “Relativistic” Oscillator.

u2/c'2 « 1. (52)

(53)

mox
(54)kx.

a constant of the motion. Hence, by

(55)

x at the turning points of the particle

(56)

for the velocity T

(57)

and we get

In the derivation of the relation (34) from the equations of 
motion, we assumed for convenience that

This assumption is of course not essential. As an example let us, 
as in Section 3, consider the case of a macroscopic particle 
elastically bound to a fixed point 0; but now we shall not assume 
that the velocities are small. However, we shall stick to the other 
assumptions made in Section 3, viz. that the gravitational force 
can be neglected, and that the potential % can be regarded as a con­
stant over the small domain of the orbit of the particle. For the 
mass in the equations of motion we then have, according to (8), 
(14), and (19)

the values of
0, the constant E in (55) may be written

where m0 and c are treated as constants. Using again local Car­
tesian coordinates, we get now, instead of (31),

The total energy E is 
(13), (53), and (36),

m = -
1/1 -u2/c'2
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However, the ratio k/2 moc'2 is independent of the potential /. 
In fact, by (26), (19), and (14),

k/2 m0c'2 — k/2moc2. (58)

Therefore, by integration of (57) over one period T = 1/v, corre­
sponding to a motion of the particle from x = — A to x = + A 
and back, we get

T = T(1 +2%lc2)-\ (59)
where

_ i
T = (2/c)j{l — [1 + (A2 — X2) (k/2 m0c2)]~2} 2 dx (60) 

is the period of the same oscillator when placed at rest in a 
system of inertia. Eq. (59) or

v = v ]/1 4- 2 %/c2 (61 )

is identical with (34), which thus has been derived also for a 
“relativistic” system.

When
kA2/moc2 « 1 , (62)

Eq. (60) gives of course the non-relativistic expression v — 1/T 
= k/m0/2 n; which is independent of the amplitude, but in 
general the frequency will depend on A and be smaller than this 
value. This is connected with the fact that the relativistic mass 
m is larger than the rest mass which will slow down the motion. 
The velocity u is therefore always smaller than the value ]/k/m0A 
for the maximum velocity in the harmonic oscillation (32):

u < |7c/m0 A. (63)

6. Ideal Standard Clocks.

We shall now turn to the problem, mentioned in the Introduc­
tion, of deriving the formula (1) for the rate of a clock in a 
gravitational field from the dynamics of the clock. Let us first

Dan. Mat.I’ys.Medd. 30, no.10. 2 
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consider a clock at rest in a static gravitational Held, in which 
case we should have, according to (1),

dr — dt |/ 1 +2 %/c2. (64)

As a simple model of a clock, we may take the oscillator 
treated in Section 3, consisting of a particle of proper mass ih0, 
which is elastically bound to a fixed point 0 in the system of 
reference, the more so as any vibrating system in a certain approx­
imation has the properties of an oscillator. The time shown by 
the clock is now per definitionem proportional to the number 
of beats in the oscillation. The ratio co/cb, determined by the 
equation (34), is therefore equal to the ratio of the rates of the 
clock when placed at potential / and at zero potential, respect­
ively. Since the coordinate time t may be identified with the 
time shown by the clock in the latter case, we see that (64) is a 
consequence of (34).

We shall now establish the general conditions which a clock 
must satisfy in order that the formula (1) is valid, i. e. the condi­
tions for the oscillating system to be an ideal standard clock. In 
the derivation of (34) from the equations of motion (16), we have 
made a number of assumptions. First, we assumed that the 
velocity of the particle in the oscillation is small compared with 
the velocity of light, i. e. that (62) is satisfied. However, as shown 
in Section 5, this is not a necessary but only a convenient as­
sumption. Next, we made the essential assumption that the gravi­
tational force m0G in (16) could be neglected. Since the elastic 
force $ is of the order kA, the condition for this to be justified is 
that

m0G/ÅA«l. (I)

If this condition is not satisfied, the equation of motion for an 
oscillator in the gravitational field will not have the same form 
as in a system of inertia. It is true that a constant force m0G 
added to the elastic force of an oscillator will not change the 
frequency of the oscillator, but only the equilibrium position. 
However, this holds only for an exact harmonic oscillator; for 
any potential other than the one given by (36), an additional 
constant force will change the frequency and invalidate the simple 
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formula (34). To see this, and to gel an estimate of this effect, 
we let V (.r) be the potential of the oscillating particle without 
the force m0G. The total potential for the system with the addi­
tional force is then

V(x) = V (.r)— m0Gx. (65)

If x0 and .r0 are the values of x corresponding to the equilibrium 
positions of the particle with and without the force m0G, we have

V'(æo) = 0, (66)

V'(æo) = V'(æ0) —m0G = 0. (67)

From the Taylor expansion of V(.r) around the point a-0

F (,r) = V(x0) +1 y" (^o) (æ — æo)2 + y" ' (æo) (æ — -ro)3 4----- (68 )

we see that the system without the force m^G may be regarded as 
a harmonic oscillator with the elastic constant

k = F" (x0),

provided that the amplitude A satisfies the condition

V"'(x0)A _ F"'(x0)A z/
3 V" (æ0) 3 k

Hence, by (67), (68), and (69),

Xo — -T0 = ln0 6r/À’,

which is small compared with A if (I) is satisfied. The system 
including the constant force m0G may therefore be treated as a 
harmonic oscillator with the elastic constant

k~V"(x0) = F"(T0) = F"(.r0) + V'"(x0)(x0

= k + V" ' (,r0) m0G/k.

2*

(69)

(70)

71)

Here we have used (65), (68) and (71).
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The relative change in k cine to the gravitational force is 
th us

ök/k = V"\x0) m0G/k2, (73)

and the corresponding change in the frequency (d = pÀ-/7n0 ’s

dco/co = ôk/2k = V"'(.x^) m0G/2 7c2. (74)

(75)

showing that the degree of accuracy with which the formula (64) 
is valid depends not only on how strongly (I) is fulfilled, but 
also on the degree to which the “harmonicity” condition (70) is 
satisfied.

In the quantum mechanical derivation of the red-shift formula 
(47) in Section (4), the assumption (I) would mean that the in­
fluence of a constant field of the strength m0G on the levels of the 
atomic system, “the gravitational Stark-efi'ect”, is negligible.

In the derivation of (34) from (16) it was further assumed 
that % in the expression for the mass on the left-hand side of 
(16) could be treated as a constant, or more precisely, that

(76)

For a static field, this gives, on account of (19), (14), (21), and 
(63),

(77 a)

or
GA/c'2 « 1 . (11)

Since u2 is always smaller than c'2, (77 a) or (II) will always 
hold when condition (I) is satisfied.

For a non-static field, we get from (76) the further condition

(77 b)
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which by (63) and (33) may be written

Thus, the variation of the dimensionless quantity //c2 during one 
oscillation must be small.

Finally, the use of Cartesian coordinates in the whole region 
of oscillation, as was implied in the derivation of the oscillator 
equation (31), is possible only if the spatial curvature can be 
neglected inside this region. This leads to the conditions

xA2 « 1 (IV)

where x is the Riemann curvature constant of any “plane” sur­
face of geodesics through the point 0. For the “plane” defined 
by the directions of the x1- and æ2-coordinate curves in 0 the 
curvature constant x is defined by u>

x = P1212K711722 '7iz)> (78)

where is the Riemann-Christolfel curvature tensor formed 
by the spatial metric tensor The corresponding curvatures 
of the “(23)-” and “(31)-planes” are obtained from (78) by 
cyclic permutations of the numbers 123.

Up to this point, the centre of the clock, 0, has been assumed 
to be fixed at a definite place in the system of reference. Now, 
let 0 be accelerated with the acceleration a. As long as the velo­
city of 0 is small compared with c, the derivation of (31) from 
the equations of motion (16) will still be valid if the further 
condition

moa«kA (V)

is satisfied. Let yL and 1/ = ijl be the coordinates and velocity 
of the centre 0. For the coordinates and velocity of the particle, 
we have then

xl = yl + P, u6 = U + wl, (79)

where P is the small vector leading from the centre 0 to the po­
sition of the particle and wl — I;1. (P is only approximately a 
vector!) When (79) is introduced into the left-hand side of (16), it
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is seen that the equations of motion under the conditions mentioned 
above again reduce to an equation of the type (31) with x re­
placed by £.

By (33), the condition (V) implies that

zl v a/co = a J/zn0/Â’ « |/£/m0 ‘ = wâ è, (80)

i. e. the velocity acquired by 0 during one period of the oscillation 
is small compared with the mean velocity of the oscillation. The 
condition (V) is thus the condition for an “adiabatic accelera­
tion” of the clock. Since (80) implies Zl p « c', this condition 
also gives the justification for using the simple “action at a 
distance” expression for the force in the equations of
motion.

If (I) and (V) are not sufficiently well satisfied, we obvi­

ously have to add the extra force in0G — -(mov) m0 (G — a) 
dt

on the right-hand side of the equations of motion (31). This will 
cause a change in the frequency which is given by (75), but with 
G replaced by | G — a |. Thus, if the acceleration of the centre 
of the clock is equal to the gravitational acceleration, as will be 
the case if the clock is allowed to fall freely, then the two effects 
dealt with in (I) and (V) will practically cancel and the equations 
of motion will have the form (31) even if (I) and (V), separa­
tely, are not well satisfied.

Finally, when 0 is moving with the finite velocity v, we get 
again, under the conditions (I) — (V), an equation of the oscil­
lator type (31) for the motion of the particle, but with ni0 re­
placed by

in — m0 r (O), (81 )
where

I1 (0) — { 1 + 2 //c2 — p2/c2 } 5 (82)

is the generalized Lorentz factor corresponding to the velocity of 
the centre. By a consideration similar to that which in Section 2 
lead to the equation (26), we now get for the elastic constant 

Å' = k/F(0), (83)
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where k is the value of this constant in a local rest system of 
inertia for the centre 0.

Hence, under the above conditions, the frequency co of an 
oscillator moving with the velocity v in a gravitational field must 
be connected with the proper frequency co of the same oscillator 
at rest in a system of inertia by the formula

co = co I 1 + 2 %/c2—o2/c2, (84)

in accordance with the formula (1) for an ideal standard clock. 
d y . . .For given G, —, z and a, it is obviouslv always possible to 
ot 

choose the parameters of the clock co — 1 k/ih0 and A such that 
the conditions (I) — (V) are satisfied, i. e. it is always possible 
to construct clocks which are “ideal” under given circumstances.
On the other hand, the degree of accuracy to which a given clock 
(given k, m0 and A) may be regarded as ideal depends of course 

on the use we want to make of it (i. e. on G, dX 
dt’

z and cz). Let us

now see to what degree of accuracy the relations (I) — (V) are 
satisfied by the “atomic clocks” in order to decide whether the 
variations in the rate of the clock due to variations in the gravi­
tational field of the earth could in principle be measured by 
means of such clocks. It is a common feature of these clocks 
that atomic systems like ammonia molecules act as the “balance” 
of the clock. The vibrations of the atoms in the molecule, which 
in this connection may be treated as a classical mechanical 
system, are to a high degree of accuracy harmonic oscillations. 
The frequency of the oscillation is of the order

co IO10 sec-1. (85)

Since the mass of the oscillating particle is of the order

ni0 & 10—24 r/r (86)

the system may be represented by a harmonic oscillator with an 
elastic constant

k = co2m0 10—4 (/r/sec2. (87)
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The amplitude A of the oscillator cannot be larger than atomic 
dimensions. In the conditions I, and II we can therefore put

A ä^ 10—8 cm, c Äh c — 3-1010 cm/sec, G 103 cm/sec2 (88) 

for terrestrial gravitational fields.
Hence,

m0 Gjk A Äh 1 ()—9 (89)

GA/c'2 IO“25. (90)

Further, a straight-forward calculation shows that the quantity on
the left hand side of (IV), for a point at the surface of the earth,

is of the order 
earth.

(F/A2
dr2 c2

(GA/c'2) • (A/r) where r is the radius of the

The conditions (I) — (V) are therefore amply satisfied and the 
condition (V) is of course also well satisfied even for accelera­
tions considerably larger than the gravitational acceleration. We 
also see that the oscillator is highly non-relativistic, since

co2A2/c'2 10-17 « 1 . (91)

From (75) and (89) we now get

ôa>/a> 10~9 (V"'(x0) A/S Å-). (91)

Thus, if we are aiming at an accuracy of the order of IO-12, the 
quantity on the left-hand side of (70) which determines the degree 
of harmonicity of the oscillator must be smaller than 10—3. How­
ever, as pointed out on p. 22, the accuracy to which the clock 
may be considered “ideal” increases considerably if the atomic 
systems which constitute the balance of the clock are freely 
falling in the gravitational field, since the effects dealt with in 
(I) and (V) then almost completely cancel.

In concluding, I wish to thank Dr. D. Frisch for pleasant 
and illuminating discussions on problems connected with the 
atomic clocks.

Institute for Theoretical Physics, 
University of Copenhagen.
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Appendix.

In this Appendix, we shall give a short derivation of the 
three-dimensional equations of motion in the most general case, 
where (3) is not satisfied and where the dynamical action of the 
gravitational field is described by a vector potential

y i = 9nlV~ g a (A-O

as well as by the scalar potential defined by (5). In this case, 
we have, instead of (4), the spatial metric tensor given by

d°2 = ytx (I* 1 ’ y m = 9 m + yth- (A- 2)
Let

dr = ds/ic = |/—gtk dx*  dxk /c (A. 3)

be the real quantity measuring the length of the time track of a 
particle in (3 + l)-space, and let Fi be the covariant components 
of the non-gravitational four-force. Then, using an arbitrary 
parameter representation, the equations of the time track may be 
derived from the variational principle

<5 \ moc J — gtk x*  xk dX — Ç Fi ôx*  — dX = 0, (A. 4)
•Ux ' »’a, d X

where <5.r*  are arbitrary variations of the space-time coordinates
I X2x*  vanishing for X = and

dx*
dX

dx*  d T
dr dX

(A- 5)

Since X may be chosen arbitrarily, we can, for instance, use the 
lime coordinate I = x*[c  as parameter, in which case Ôx4 = 0 

dx1in (A. 4) and xl = — = ul is the three-dimensional velocity. 
dt

Further, in this case one easilv gets

= - |/— gikX*x k = [(|/1+2//c2—ytu7c)2—u2/c2]2 = 1/r, (A. 6)
dx c 
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where F is the Lorentz factor in this most general case, and zz2 
= y(XzzLzx. W ith this expression for F, the connection between 
Ft and the components 3'( of the three-dimensional force is then 
again given by (17).

With this choice of À, the variational principle (A. 4) takes 
the form

/»Z2

\ ( ôL(xl, a1) + = 0, (A. 7)

where
L (.? , u‘, t) = — moc I (c — yxux)2 — zz2 (A. 8)

is the Langrangian of the particle in the gravitational field.
Here, xl = xl (0 as a function of the time t is varied in such a 
way that Öxl — 0 for / = J* 1. In the expression for the La­

grangian, c — cj 1 + 2 / (.r\ 0/c2 is the quantity introduced by 
(14), but in the present case, (yt # 0), the velocity of light de­
pends on the direction of propagation and c is now the velocity 
of light in a direction perpendicular to the space vector yt7>.

As in (8), the mass of the particle in the gravitational field 
is defined as in — ih0 F, but with the Lorentz factor given by 
(A. 6), i. e.

is now a function of the four potentials (y(, /) as well as of the 
velocity u. For the canonically conjugate momentum to the co­
ordinate xl, we thus get, by (A. 8) and (A. 9),

dL
dF

mut + my, (c — yxiF) = Pi + m/Jc — 7>X)- (A.10)

Thus, differs from the momentum pt = zzzzz, of the particle 
by a term depending on the vector potential in analogy with the 
case of a particle in an electromagnetic field.

1 he equations of motion following from the variational prin­
ciple (A. 7) are

(A.11)
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By (A. 9) the Lagrangian (A. 8) can also be written

L = — m [(c' — yxnx)2 — u2]. (A. 12)

Thus, by (A. 10) and (A. 12), we get for the Hamiltonian H cor­
responding to the Lagrangian L

H — nLxl ~L = m + in (ylUl) [c — yxu*]  1
(A. 13)

+ m [(c — yxux)2 — u2],

which leads to the following expression for the energy of the 
particle in the gravitational field:

H = me Çc — y. (A. 14)

In the special case yt = 0, Eqs. (A. 9), (A. 14) are identical with 
the equations (8), (13) in Section 1.

By using the definitions (A. 10, 13) of and H, and the 
equations of motion (A. 11), we get for the time derivative of II

dH
dt

(A. 15)

and, by (A. 14), in (A. 10) may be written

= Pc + HyJc. (A. 16)

Thus, the left-hand side of (A. 11) takes the form

eln‘ = dp‘+{^
dt dt \ x

dL\ 
dt! yjc + H dt

Further, we get by a simple calculation from (A. 8) and (A. 14)

dxl 2 dxl c ’d.r1 dxl ! (A. 17)

so that the equation of motion may be written

- = 8*  — (<VX ux) yjc + yjc — (yt/c )

_Hidc'_ _^f^\ 
e 'd.T? dxL !

dep,
dt

(A. 18)
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By this explicit use of the conservation law (A. 15) for the 
energy, we have achieved that the right-hand side of (A. 18), 
the force acting on the particle, does not contain the acceleration, 
but only the coordinates and the velocity of the particle. This 
expression for the force can be simplified by introducing the 
antisymmetric spatial tensor a>lx which is connected to the local 
rotation of our system of reference with respect to the local 
systems of inertia. The latter is defined by12)

(A.19)

By a somewhat lengthy, but elementary calculation, (A. 18) can 
be written in the form

with

I- |/ï + 2 Z/c*  ■ (<■' - rxux) +^‘
2 c at

(A. 2(1)

(A. 21)

If we put yt — 0, these equations are reduced to the simple 
equation (16). Further, in the case of stationary weak fields, 
where time derivations and products of the potentials and y 
can be neglected, we get for the gravitational force

(A. 22)

In a rigid system rotating with constant angular velocity rela­
tive to a system of inertia, the equation (A. 22) for KL gives the 
usual expressions for the centrifugal and Coriolis forces which 
therefore are valid for arbitrary velocities of the particle13), the 
only effect of relativity in the equations of motion being the 
velocity dependence of the mass according to the formula (A. 9).
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The internal conversion lines originating in excited levels of 8177208 have been 
obtained in coincidence with «-particles from 83B/212. Five of the transitions 
were found to be magnetic dipole from their internal conversion coefficients. 
In three cases, the multipole order was confirmed by the K/L ratios.

The results are compared with the model of Pryce3\

1. Introduction.

In the 771-active deposit, 81 77208 is formed by the «-decay of 
83/h'212. The «-spectrum consists of six lines, and the corresponding 
level scheme is of particular interest since 81 77208 has one proton 

hole and one neutron outside a double-closed shell structure.
The levels as indicated by the «-spectrum appear in Fig. 1. 

From shell model considerations, Pryce3) has interpreted the two 
lowest levels as a doublet resulting from the splitting of an ($1/279/2) 
configuration. Similarly, the four upper levels can be obtained 
by the splitting of a (^3/279/2) configuration. Tentatively, the angu­
lar momenta shown in Fig. 2 were ascribed to the levels.

The («—y) angular correlation measurements of Horton and 
Sherr4), and ofWEALE5), suggest that the angular momenta of 
the ground state and the first excited level are (5, 4). This agrees 
with the subsequent disintegration of 77208, which decays by 
^-emission (log ft ~ 5.5) to levels with angular momenta 5— 
and 4“, but not to the 3— level in 82P52086\ A determination of the 
multipole order of the y-rays from the excited levels would 
provide a further test on the consistency of the assignments of 
Fig. 2. As the total excitations of the different levels are known 
with great accuracy from the «-spectrum, the internal con­
version coefficients for the y-transitions can be found merely 
from the absolute intensity of the /3-lines.

The disintegrations taking place in the T7i-active deposit are 
shown in Fig. 3. Several of the lines in the composite /5-ray 
spectrum are known to originate in 77208. The decay of the 40 keV 
level to the ground state thus results in the very strong L, M, and 
N conversion lines which, by Ellis , were denoted the A, B, and 

1*
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Tl 208
Fig. 1. The decay scheme Bi212 Tl208. The numbers to the right in the figure
indicate the excitation of the levels according to RytzF. The energies are as found 
by Ellis2\ Transitions observed in this investigation are shown by vertical arrows.

Bb lines. The radiation has been established to be of Ml nature 
from the L^.L^Lm ratio and from the lifetime . The other 
lines are much weaker, as can be seen from Fig. 1. The Æ-con- 
version line for the transition from the 327 keV level to the 40 keV 
level (in Fllis’ notation the Ga line) has been measured by 
Flammersfeld8). Some other lines have been recorded on photo­
graphic plates2), but their intensities are not known with sufficient 
accuracy.
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--------------- 3 +
__________ 6 +
--------------- 4 +
__________ 5 +

Fig. 2. The angular momenta proposed by Pryce3'. The value 6 for the 5th 
level is not in accordance with experiment.

Fig. 3. Decays taking place in the T7i-active deposit. Only the stronger branches 
are shown.

The experimental difficulties are due partly to the continuous 
ß-ray background, partly to numerous strong lines from tran­
sitions in Bi212 and Pb208. The investigation described here repre­
sents an attempt to overcome these difficulties by utilizing the 
coincidence between the ^-particles and the internal conversion 
lines.

2. The Spectrometer.
The ß-ray spectrometer9^ which we have recently constructed 

is especially well suited for coincidence experiments of this type. 
A 30 mm dia. glass plate covered with a thin layer of ZnS powder 
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was placed immediately behind the source. The glass plate was 
optically coupled to the photocathode of a multiplier tube RCA 
6199 through a vacuum tight lucite window.

This type of counter produces rather strong pulses when hit 
by «-particles, and gives practically no response to ß- and 
y-radiation.

The transmission of the spectrometer without the «-counter is

about 9 per cent, at a resolution of ~ 1.5 per cent. It proved

advantageous to place the «-counter so near the source that it 
covered a fraction of the useful solid angle of the spectrometer, 
which reduced the transmission to about 8 per cent. More than 
35 per cent of the «-particles could then be counted, and the 
efficiency in the coincident spectrum was between 2.5 and 3 
per cent.

/3-particles focused in the spectrometer were counted by an 
anthracene crystal with optical coupling to a multiplier, EMI 6260. 
The voltage supplied to this photo multiplier tube was varied so as 
to give pulses of the same height for all energies of the ^-particles.

The pulses from the two counters were fed through cathode 
followers to a coincidence stage with variable resolving time. The 
counts from the anthracene crystal and the coincidences were 
recorded on two decade scalers. The magnetic field had only 
negligible effect on the efficiency of the counters.

For reasons which will be referred to later, it was necessary 
to use rather strong sources. Usually, the «-counter was hit by 
about 105 «-particles per second. Although ZnS is a slow phosphor 
with a decay time of several //s, a proper shaping of the pulses 
reduced the blocking of the circuit caused by each pulse to 
about 1 /ns, but the dead time still amounted to about 10 per cent. 
It was found that the rate of true and random coincidences was 
reduced to the same extent, and also that the dead time correc­
tions varied with the source strength as predicted by counting 
theory. The coincidence resolving time was of the order of x/10 /ns. 
It could not be reduced very much below this without loss of 
true coincidences, presumably because of the slowness of the 
ZnS phosphor.
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3. The Sources.
The sources were prepared by activation in TTz-emanation of 

small bits of aluminum foil with a thickness of 150 /zg/cm2. In 
most cases, these were placed between two larger pieces of the 
same foil and then fixed to a frame of thin copper wire by means 
of a small amount of vacuum grease. This mounting of the 
source prevents the escape of recoiling radioactive atoms, an 
effect described in more detail by Flammersfeld8'.

Uncovered sources were used for the measurement of lines 
with energy below 100 keV, and the foils were activated on one 
side only. The counting of particles having passed through the 
foil had also to be avoided in these cases, and only three of the 
gaps of the spectrometer could be utilized.

4. The Coincident Spectrum.
a. Background conditions.

Both the composite spectrum, consisting of all the 0-rays from 
the Th-active deposit, and the «-coincident part of it were recorded 
during the measurements. The correction factor for random 
coincidences was found simply from the strength of a non­
coincident line in the coincident spectrum. For this purpose the 
F-line, the very strong 7<-conversion line for the 238 keV tran­
sition in Bz212 (see Fig. 3), was generally used. For some different 
points of the line the number of coincidences was plotted against 
the total counts. A straight line was then obtained, and the slope 
giving the correction factor could be found in a few minutes 
with a statistical uncertainty less than two per cent. Random 
coincidences were normally less than one per cent of the counts 
in the composite spectrum.

Fig. 4 shows the final spectrum corrected for random coin­
cidences. The continuous background is due to /^-particles in 
coincidence with «-particles from Bo212 (see Fig. 3). Since the 
half life of this isotope is only about 3/10 /lis, a fraction of the 
«-particles is emitted so fast that they appear coincident with 
the ^-particles in the continuous spectrum from Bz212. With a 
resolving time ~ 1/10(zzs, about 8 per cent of these «-particles
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fluctuations are indicated by dotted bars above the curve.
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were able to produce coincidences, and this background con­
stituted the main experimental difficulty.

If a background consists principally of random coincidences, 
it varies approximately as the second power of source strength. 
The outcome of an experiment will then be rather independent 
of the source strength, since the height of the coincident lines as 
well as the statistical fluctuations go with first power. This does 
not hold for the background described above. Sufficient statistical 
accuracy could be obtained within a reasonable time only when 
the sources were as strong as possible, the limiting factor being 
the dead time of the coincidence circuit.

In order to cover a reasonable part of the spectrum within 
the half life of the source, 10.7 h, counting could not go on more 
than 10 min. for each point. With this counting period the height 
of the weaker lines was less than twice the statistical fluctuations. 
To improve the accuracy, the measurements were repeated, for 
a certain part of the spectrum 13 times. The magnetic field was 
adjusted to the same values in each run to make possible a sum­
mation of the statistical material.

The spectrum on Fig. 4 contains a summary of the information 
gained from these experiments. Standard statistical deviations for 
the different parts are given by the dotted bars above the curve. The 
section between the arrows M 287 and K 492 was measured with 
the greatest accuracy, each point corresponding, as mentioned, 
to more than two hours of counting. Then the three weak lines 
in the region had a height of more than 6 times the statistical 
fluctuations. The spectrum represents more than 200 hours of 
measurements.

b. The strength of the lines.
Of the stronger lines in Fig. 4, B and Jc3 are completely 

resolved from non-coincident lines in the composite spectrum. 
The ratio between their intensities in the two spectra could then 
be found, thus giving the efficiency of the coincidence arrange­
ment. The results obtained from both lines agreed. Unfor­
tunately, Jc3 is not strong enough to make the experimental un­
certainty less than about 10 per cent, but the relative strength of 
neighbouring lines is certainly given with rather good accuracy 
from Fig. 4.
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The determination of the absolute intensities involves a com­
parison in the composite spectrum of the area under at least one 
of them with the total area of the continuous ß-ray spectra, which 
represents the total number of disintegrations in the source. The 
line Ga has been measured in this way by Flammersfeld8^ 
unfortunately, however, with poor statistical accuracy.

The composite spectrum recorded simultaneously with the 
coincident part could in principle be used in this manner. It 
appeared, however, that the scattering of particles caused by the 
«-counter increased the area of the continuous spectrum between 
15 and 20 per cent. The general shape was not changed very 
much, and neither the shape nor the relative strength of the lines 
was altered. As a number of the stronger lines have been measured 
absolutely with great care in other cases8,10,11), the intensity of 
the coincident lines could also have been found merely by using 
these known lines as standards instead of the continuous spectrum.

It was decided, however, to make an independent determina­
tion on the Ga line. As a check of the reliability of the procedure, 
a few of the strong lines with known intensity were redetermined. 
These measurements, performed with the «-counter removed, 
are described in Section 5.

5. Redetermination of the Intensity of Ga and Some 
Strong Lines.

a. The F and L lines.
The area of the continuous /Tray spectra was obtained by the 

procedure worked out by Flammersfeld8-* and others10^. To 
diminish the uncertainties from the measurement of the low 
energy /krays, the method makes use of only the partial spectra 
of high energy which orginate in Bi212 and 77208 (Fig. 3). The 
separation from the soft component of Pb212 was made by 
extrapolation, according to the spectral shape for (Bi212 + 77208) 
as found by Flammersfeld8-* and by Martin and Richardson10^

Due to the one hour lifetime of Bi212 compared to the 10.7 
hour lifetime of Pb212, the (Bi212 + 77208)-spectrum must be 
approximately 11 per cent stronger than the spectrum of Pb212 
when the source is in radioactive equilibrium1 .
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The two strong lines, F (148 keV) and L (422 keV), repre­
senting different energy regions, were selected. They were ob­
tained with the same resolution as used in the coincident measure­
ments.

The intensity of F was found to be 0.30 i 0.02 of all disinte­
grations Pb212 —> Bi212. This is in accord with more recent determ­
inations8,1 ,11). The measurement was reproducible within 
2 per cent, but the experimental uncertainty must be estimated 
as somewhat higher, due to some arbitrariness in the method of 
extrapolating.

The ratio between the intensities of the F line and the L line 
was found to be 45 dz 3, in agreement with Martin and Richard­
son. Flammersfeld has found a ratio of 37, but his results seem 
to be higher than other determinations for several of the high 
energy lines.

b. The Ga and I lines.
As mentioned previously, the coincident lines B and Jc3 arc 

not disturbed by neighbouring lines, and their intensities could 
thus be deduced from a comparison with the F line. Jc3 is rather 
weak, however, and the energy of the B line (36 keV) is so low 
that a certain loss of true coincidences could not be excluded. 
Therefore, it was decided to base the determination of the absolute 
strength of the coincident lines on Ga (202 keV). With the resolu­
tion used in the experiments described so far, this line was not 
resolved from the very much stronger H line from Bi212, which 
has a momentum only 2 per cent higher. Consequently the reso­

lution was increased to — ~ 0.7 per cent. Only two of the gaps 

of the spectrometer were utilized, with the solid angle reduced 
to ~ 1.5 per cent. The source was about 3x1 mm2, and the 
transmission was then 1.2 per cent.

Fig. 5 shows the G, Ga, and H lines which are well resolved 
at this resolution. The height of Ga relative to F could be found 
with a statistical uncertainty not exceeding 2 per cent, but the 
experimental uncertainty was raised somewhat due to the tail 
of the H line, which contributed to the strength of Ga by a few 
per cent.

With the intensity of the F line as given above, the strength
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of Ga was found to be (11.3 ± 1.2) x 10“4 of all disintegrations 
of Bz'212 + Tl206. This agrees with Flammersfeld’s8) results.

6. The Multipole Order of the Transitions.
The 40 keV transition responsible for the strong low energy 

lines in Fig. 4 is known to be of M 1 nature6 7’. An accurate determ­
ination of the intensity of these lines was not attempted, but 
it was found that internal conversion took place in more than

At this resolution, the I line also is separated from the neigh­

bouring lines. The ratio F 
/ , which is the K/L ratio for the 238 keV

magnetic dipole'' y-ray, was determined to 5.5 ± 0.2, also in 
accordance with Flammersfeld.
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70 per cent of the cases. A better determination of the conversion 
coefficients has been obtained from measurements of the y-ray5’12\

From Fig. 4, in addition to the low energy lines, 5 Æ-con- 
version lines and 3 L-conversion lines can be established. The 
intensities are roughly in agreement with the results of Ellis2) 
for the lines Ga, Jat, and As, but Jc.> turned out to be two times 
weaker and Jc3 four times stronger than previously reported. It 
is remarkable that the lines L 327 and L 451 have not been 
observed earlier, although they are stronger than Jc2 and Jc4. 
The strength of the lines on Fig. 4, relative to Ga, is given in 
Table I.

Table I.

y-ray 
energy 
keV.

Conv. 
shell

/9-line 
energy 
keV.

Intensity 
relative 
to G„

y-ray 
energy 
keV.

Conv. 
shell

/3-line 
energy 
keV.

Intensity 
relative 
to G a

287 K 202 1 431 K 346 0.035 ± 0.010
287 L 272 0.19 ±0.01 451 K 366 0.30 ± 0.02
327 K 242 0.24 ± 0.01 451 L 436 0.055 ± 0.010
327 L 312 0.050 ± 0.010 471 K 386 0.022 ± 0.006

Table II shows the corresponding A-shell internal con­
version coefficients ak, and the K/L ratios. The calculation is 
based on Ga = 11.3 X IO-’4, a branching ratio13) 

B/212^ T/208 + po212 = 0.354,

and an excitation of the levels as indicated on Fig. 1. In the two 
cases where two transitions take place from the same level, only

O I D
a mean value ———- of the conversion coefficients can be cal- 

71 + /2

culated, as the relative intensities of the y-rays are unknown.
The theoretical conversion coefficients are taken from the 

tables of Rose et al.14,15\
The lifetimes of the excited states must necessarily be of the 

order of or shorter than the coincidence resolving time, 1/10/zs. 
This excludes multipole orders higher than El, E2, Ml, and 
M 2, and the conversion coefficients are very different in these 
cases. The M 1 nature of the transitions in Table II is indicated
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Table II.

y-Ray 
energy 

keV
ak 

observed
theoretical K';L ratios 

observed

K/L ratios 
theoretical

JE1 E2 Ml M2 E2 Ml

287 I 0.33 ± 0.05 / 0.027 0.070 0.50 1.55 5.3 ± 0.3 1.2 5.7
327 1 I 0.020 0.053 0.35 1.00 5 ± 1 1.6 5.7
431 ! 0.14 ± 0.05 { 0.011 0.030 0.17 0.44
471 1 1 0.0090 0.024 I 0.13 0.33
451 0.10 ± 0.02 0.010 0.027 0.15 0.38 5 ± 1 2.5 5.7

by the conversion coefficients, and for three of them it is con­
firmed by the K/L ratio. The deviations from the theoretical 
values are probably due to an admixture of E2 radiation*).

*) Note added in proof : Results recently obtained in Amsterdam suggest 
that the theoretical M1 conversion coefficients are 30-40 per cent too high. 
G. J. Nijgh and A. H. Wapstra: To be published.

It was not possible to detect the K-lines for transitions from 
the 492 keV level to 327 keV or to the ground state. An upper 
limit for their strength is about 1/20 of the line K 451. The excita­
tion of the 617 keV level is about 9 times weaker than for 471 keV. 
It was not attempted to find the corresponding lines.

7. Discussion.
The decay scheme in Fig. 1 is definitely born out by the 

establishment of coincidences between «-particles and the internal 
conversion lines. Change in angular momenta of Zl I = 0 or 1 are 
indicated by the magnetic dipole character of the transitions, 
which also shows the 5 lower levels to have the same parity.

Thus, the angular momenta of the 327 and 471 keV levels 
must be either 4 or 5 if the ground state doublet, as supported 
by earlier experiments, is assumed to be (5, 4). The 492 keV 
level then most probably has angular momentum 3. A low 
angular momentum for this level is consistent with the relative 
intensities of the «-lines. Bz'212 has angular momentum 14), and 
the «-transition to the 492 keV level is the most favoured of the 
transitions shown in Fig. 1. An angular momentum of 3 for this
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level is in disagreement with the assignments of Fig. 2. This is 
not a serious failure of the model which docs not definitely give 
the order of the levels in a configuration.

Acknowledgements.
The author wishes to express his sincere gratitude to Professor 

Niels Bohr for his continuous interest in these problems and 
for ideal working conditions in his Institute.

I am indebted to Professor M. H. L. Pryce for helpful sug­
gestions, and to Drs. Aage Boiir and Ben R. Mottelson for 
valuable discussions.

Institute for Theoretical Physics, 
University of Copenhagen, 

Denmark.



References.
1. A. Rytz: C. R. 233, 790 (1951)
2. C. D. Ellis: Proc. Roy. Soc. A 138, 318 (1932)
3. M. II. L. Pryce: Proc. Phys. Soc. 65 A 773, 65 A; 962, (1952)
4. J. Horton and R. Sherr: Phys. Rev. 90, 388 (A) (1953)
5. J. W. Weale: Proc. Phys. Soc. 68 A, 35 (1955)
6. L. G. Elliot, R. L. Graham, J. Walker, and J. L. Wolfson:

Phys. Rev. 93, 356 (1954)
7. R. L. Graham and R. E. Bell: Can. Jour, of Phys. 31, 377 (1953)
8. A. Flammersfeld: Z. Phys. 1 14, 227 (1939)
9. O. B. Nielsen and O. Kofoed-Hansen : Dan. Mat. Fys. Medd.

29, no. 6 (1955)
10. D. G. E. Martin and H. O. W. Richardson: Proc. Roy. Soc. A 195.

287 (1948)
11. N. Feather, J. Kyles, and R. W. Pringle: Proc. Phys. Soc. 61.

466 (1948)
12. B. B. Kinsey: Phys. Rev. 72, 526 (1947)
13. P. Marin, G. R. Bishop, and H. Halban: Proc. Phys. Soc. 66 A.

608 (1953)
14. M. E. Rose, G. H. Goertzel, and G. L. Perry: ORNL-1923 (1953)
15. M. E. Rose, G. II. Goertzel, and C. Swift: L-shell internai con­

version coefficients, privately distributed.

Indleveret til selskabet den 24. marts 1955. 
Færdig fra trykkeriet den 3. oktober 1955.



Det Kongelige Danske Videnskabernes Selskab
Matematisk-fysiske Meddelelser, bind 30, nr. 12

Dan. Mat. Fys. Medd. 30, no. 12 (1955)

DEDICATED TO PROFESSOR NIELS ROHR ON THE
OCCASION OF HIS 70TH BIRTHDAY

DEN KLASSISKE MEKANIK
I GEOMETRISK BESKRIVELSE

AF

MOGENS PIHL

With art English Summary

København 1955
i kommission lios Ejnar Munksgaard



INDHOLD
Side

Indledning............................................................................................................................... 3
I. Geometriske forudsætninger.................................................................................... 8

II. Potentialfrie, tidsuafhængige systemer................................................................... 11
III. Tidsuafhængige systemer med skalart potential.................................................. 13
IV. Konservative systemers geometrisering gennem indførelsen af en ny ko­

ordinat ............................................................................................................................ 16
V. Tidsafhængige systemers geometrisering................................................................ 20

Summary......................................................................................................................... 25
Litteratur........................................................................................................................ 26

Printed in Denmark 
Bianco Lunos Bogtrykkeri A-S



Indledning.

t væsentligt træk i den moderne matematiske fysik er ind-
1 J sigten i den geometriske udtryksmaades rige muligheder. En 
indsigt, som jo ogsaa i stedse mere vidtgaaende grad præger den 
rene matematik. Og samtidig med denne voksende brug af geo­
metriske udtryksmaader i den matematiske formalisme er vi 
gennem den almindelige relativitetsteoris beskrivelse af gravita­
tionsfeltet — og de forhaabninger, denne »geometrisering« har 
givet anledning til — blevet stillet overfor problemet om det 
fysiske rums struktur.

Begge disse tendenser — der ikke skarpt kan adskilles — kan 
allerede skimtes indenfor den klassiske fysik, og, som det saa 
ofte er tilfældet indenfor videnskabens historie, har ogsaa her de 
moderne synspunkter bevirket, at man ser paa visse tidligere 
antydninger i denne retning med større forstaaelse og varmere 
sympati, end de oprindeligt mødte. Der er her tale om en sym­
pati, som ikke sjældent i fysikkens historie har givet anledning 
til en noget misforstaaet proklamering af »forløberskaber« for de 
traditionelt anerkendte banebrydere, hvorved fortolkningen af 
de gamles udsagn er gaaet langt udover det historisk mulige*.  
Men trods denne risiko for at se det tidligere med nutidens bril­
ler, vil vi alligevel i det følgende forsøge at minde om, hvorledes 
den moderne fysiks geometriske synspunkter ogsaa kan findes 
paa et lidt tidligere tidspunkt af fysikkens udvikling, idet vi 
samtidig vil antyde den pædagogiske hjælp, den moderne for­
malisme kan yde i beskrivelsen af de klassiske, os helt fortrolige 
problemstillinger.

* Et velkendt eksempel herpaa er P. Duhems overvurdering af en vis — tid­
ligere ganske vist helt overset — middelalderlig tankeverdens paastaaede foregriben 
af den heftige udvikling i mekanikkens historie, vi sædvanligt — og med megen 
ret — knytter til Galileis navn.

1*
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Hvad angaar den formelle brug af geometriske udtryksmaader, 
er det i særdeleshed den klassiske mekaniks variationsprincipper, 
som i denne forbindelse har været af betydning. Klarest træder 
denne sammenhæng mellem geometri og variationsregning vel 
frem i en berømt afhandling af P. Pinsler [4], i hvilken der 
fremsættes en saa almindelig geometri, at et forelagt variations­
princip simpelthen fortolkes som et problem om at finde geodæ­
tiske kurver i et rum med en passende metrik, idet man altsaa 
indretter denne metrik efter variationsprincippet. En tanke, der 
har mange forløbere, og som f. eks. allerede Liouville i for­
bindelse med mekanikkens problemstilling havde været inde 
paa — som den første spire kan maaske nævnes Eulers paavis- 
ning af, at den kraftfri bevægelse af et punkt paa en glat flade 
foregaar med konstant hastighed langs geodætiske kurver paa 
fladen. Hos Finsler og hans mange efterfølgere førte denne ind­
stilling til meget vidtgaaende geometriske generalisationer, hvor 
det dog var muligt at eftervise mange fra den almindelige geo­
metri fortrolige forhold. I særdeleshed tillader denne »geometri- 
sering« af variationsregningen en smuk fremstilling af de til 
variationsproblemerne hørende integrationsteorier —den Hamil- 
ton-Jacobiske teori i mekanikken — og der bestaar her en meget 
nær overensstemmelse mellem denne geometriske betragtnings- 
maade og den af Hamilton indførte optiske analogi til behand­
lingen af saadanne spørgsmaal i mekanikken.

Men det er velkendt (se f. eks. J. L. Synge [11]), at den ved 
relativitetsteorien betingede beskæftigelse med de mere specielle 
Riemannske rum ogsaa viste sig at være af stor betydning for 
beskrivelsen af den klassiske mekanik, idet man lader den ved 
den kinetiske energi bestemte kvadratiske form i de generali­
serede hastigheder fastlægge metrikken i det til det betragtede 
mekaniske system hørende konfigurationsrum, hvis koordinater 
er systemets generaliserede koordinater. Det er dog ikke muligt 
med denne mere specielle metrik at reducere bevægelseskurverne 
i dette rum til geodætiske kurver, der gennemløbes med konstant 
hastighed. Men vi vil i det følgende vise, at det gennem indførel­
sen af en ekstra koordinat — en saakaldt cyklisk koordinat — 
er muligt at foretage en saadan reduktion til inertiens lov uden 
at forlade den ved den Riemannske metrik bestemte form for 
geometri. Det drejer sig her om en ubetydelig drejning af en 
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tanke, som først klart blev formuleret af J. J. Thomson, og som 
i særlig grad ligger til grund for H. Hertz’ bestræbelser paa at 
eliminere kraftbegrebet i mekanikken.

Med hensyn til spørgsmaalet om det fysiske rums struktur 
er der jo her tale om et problem, som rejste sig, saasnart de 
ikke-euklidiske geometrier var erkendt som tankemuligheder. Vi 
skal her nøjes med at anføre senere udtalelser af Riemann og 
Clifford, som i særlig grad viser en klar forstaaelse af denne 
problemstilling.

I det berømte habilitationsskrift »Ueber die Hypothesen, welche 
der Geometrie zu Grunde liegen« skriver Riemann [8]: Die Fragen 
über das Unmessbargrosse sind für die Naturerklärung müssige 
Fragen. Anders verhält es sich aber mit den Fragen über das Un­
messbarkleine. Auf der Genauigkeit, mit welcher wir die Erschei­
nungen ins Unendlichkleine verfolgen, beruht wesentlich die Er­
kenntnis ihres Causalzusammenhangs. Die Fortschritte der letzten 
Jahrhunderte in der Erkenntniss der mechanischen Natur sind fast 
allein bedingt durch die Genauigkeit der Construktion, welche durch 
die Erfindung der Analysis des Unendlichen und die von Archimed, 
Galiläi und Newton aufgefundenen einfachen Grundbegriffe, 
deren sich die heutige Physik bedient, möglich geworden ist. In 
den Naturwissenschaften aber, wo die einfachen Grundbegriffe zu 
solchen Construktionen bis jetzt fehlen, verfolgt man, um den Cau- 
salzusammenhang zu erkennen, die Erscheinungen ins räumlich 
Kleine, so weit es das Mikroskop nur gestattet. Die Fragen über die 
Massverhältnisse des Raumes im Unmessbarkleinen gehören also 
nicht zu den müssigen. — Setzt man voraus, dass die Körper un­
abhängig vom Ort existiren, so ist das Krümmungsmass überall 
constant, und es folgt dann aus den astronomischen Messungen, dass 
es nicht von Null verschieden sein kann; jedenfalls müsste sein 
reciprocer Werth eine Fläche sein, gegen welche das unsern Tele­
skopen zugängliche Gebiet verschwinden müsste. Wenn aber eine 
solche Unabhängigkeit der Körper vom Ort nicht statt findet, so 
kann man aus den Massverhältnissen im Grossen nicht auf die im 
Unendlichkleinen schliessen; es kann dann in jedem Punkte das 
Krümmungsmass in drei Richtungen einen beliebigen Werth haben, 
wenn nur die ganze Krümmung jedes messbaren Räumtheils nicht 
merklich von Null verschieden ist; noch complicirtere Verhältnisse 
können eintreten, wenne die vorausgesetzte Darstellbarkeit eines 
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Linienelements durch die Quadratwurzel aus einem Differentialaus­
druck zweiten Grades nicht stattfindet. Nun scheinen aber die em­
pirischen Begriffe, in welchen die räumlichen Massbestimmungen 
gegründet sind, der Begriff des festen Körpers und des Lichtstrahls, 
im Unendlichkleinen ihre Gültigkeit zu verlieren; es ist also sehr 
wohl denkbar, dass die Massverhältnisse des Baumes im Unendlich­
kleinen den Voraussetzungen der Geometrie nicht gemäss sind, und 
dies würde man in der That annehmen müssen, sobald sich dadurch 
die Erscheinungen auf einfachere Weise erklären liessen. — Die 
Frage über die Gültigkeit der Voraussetzungen der Geometrie im 
Unendlichkleinen hängt mit der Frage nach dem innern Grunde 
der Massverhältnisse des Baumes zusammen. Bei dieser Frage, welche 
wohl noch zur Lehre vom Baume gerechnet werden darf, kommt die 
obige Bemerkung zur Anwendung, dass bei einer discreten Mannig­
faltigkeit das Princip der Massverhältnisse schon in dem Begriffe 
dieser Mannigfaltigkeit enthalten ist, bei einer stetigen aber anders 
woher hinzukommen muss. Es muss also entweder das dem Baume 
zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bilden, 
oder der Grund der Massverhältnisse ausserhalb, in darauf wirkenden 
bindenden Kräften, gesucht werden. — Die Entscheidung dieser 
Fragen kann nur gefunden werden, indem man von der bisherigen 
durch die Erfahrungen bewährten Erscheinungen, wozu Newton 
den Grund gelegt, ausgeht und diese durch Tatsachen, die sich aus 
ihr nicht erklären lassen, getrieben allmählich umarbeitet ; solche 
Untersuchungen, welche, wie die hier geführte, von allgemeinen 
Begriffen ausgehen, können nur dazu dienen, dass diese Arbeit nicht 
durch die Beschränktheit der Begriffe gehindert und der Fortschritt 
im Erkennen des Zusammenhangs der Dinge nicht durch überlieferte 
Vorurtheile gehemmt wird.«

Riemanns habilitationsforelæsning gjorde et stærkt indtryk 
paa den unge, engelske matematiker W. K. Clifford, som over­
satte den til Engelsk og offentliggjorde den i Nature. I en lille 
note fra 1876 skriver han [Clifford 1]:

Riemann has shown that as there are different kinds of lines 
and surfaces, so there are different kinds of spaces of three dimen­
sions; and that we can only find out by experience to which of 
these kinds the space in which we live belongs. In particular, the 
axioms of plane geometry are true within the limits of experience 
on the surface of a sheet of paper, and yet we know that the sheet 
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is really covered with a number of small ridges and furrows, upon 
which (the total curvature not being zero) these axioms are not true. 
Similarly, he says although the axioms of solid geometry are true 
within the limits of experiment for finite portions of our space, yet 
we have no reason to conclude that they are true for very small 
portions; and if any help can be got thereby for the explanation 
of physical phenomena, we may have reason to conclude that they 
are not true for very small portions of space. I wish here to indicate 
a manner in which these speculations may be applied to the investi­
gation of physical phenomena. I hold in fact

(1) That small portions of space are in fact of a nature analog­
ous to little hills on a surface which is on the average flat; namely 
that the ordinary laws of geometry are not valid in them.

(2) That this property of being curved or distorted is contin­
ually being passed on from one portion of space to another after 
the manner of a wave.

(3) That this variation of the curvature of space is what really 
happens in that phenomena we call the motion of matter, being 
ponderable or etherial.

(4) That in the physical world nothing else takes place but 
this variation, subject (possibly) to the laws of continuity.

I am endeavouring in a general way to explain the laws of double 
refraction on this hypothesis, but have not yet arrived at any results 
sufficiently decisive to be communicated.

Og i den velkendte, populære bog The Common Sense of the 
Exact Sciences vender lian i et afsnit om The Bending of Space 
tilbage lil problemet og skriver her [Clifford 2]:

We may . . . ask . . . whether we may not . . . be treating merely 
as physical variations effects which are really due to changes in the 
curvature of our space; whether, in fact, some or all of those causes 
which we term physical may not be due to the geometrical construc­
tion of our space.

Og lidt senere:
We may conceive our space to have everywhere a nearly uni­

form curvature, but that slight variations of the curvature may occur 
from point to point, and themselves vary with the time. These varia­
tions of the curvature with the time may produce effects which we 
not unnaturally attribute to physical causes independent of the 
geometry of our space. We might even go so far as to assign to this 
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variation of the curvature of space “what really happens in that 
phenomena which we term the motion of matter".

Desværre findes intetsteds antydninger af, hvorledes Clifford 
har tænkt sig disse tanker udformet til en matematisk teori, men 
af det citerede fremgaar tydeligt, at han har været helt klar over 
de muligheder, vi nu betegner med ordene »fysikkens geometri- 
sering«.

Vi vil nu i det følgende gøre rede for, hvorledes det er muligt 
at give en geometrisk beskrivelse af den klassiske mekanik, idel 
vi indleder med en kortfattet og til formaalet tillempet fremstil­
ling af de træk af den helt almindelige geometri — den Finslerske 
geometri — vi vil faa brug for. Der bliver her tale om rent for- 
melle og den moderne fysiker i det væsentlige fortrolige for­
hold. Den her angivne vej tillader en i pædagogisk henseende 
lejlighedsvis frugtbar anvendelse af geometriske udtryksmaader, 
men de anstillede betragtninger er uden betydning for forstaael- 
sen af problemet om det fysiske (3-dimcnsionale) rums struktur. 
Ethvert felt kan i denne beskrivelse opfattes som en egenskab ved 
rummets metriske struktur, saaledes at det ikke er muligt ad 
denne vej at diskriminere geometrisk mellem de forskellige felter 
— tyngdefeltet og det elektromagnetiske felt — i den forstand, at 
disse opfattes som udtryk for forskellige geometriske træk.

I. Geometriske forudsætninger.

Et ved koordinaterne xf z — 1, 2, . ., n, bestemt n-dimen­
sionalt rum siges at være Finslersk, saafremt der til hvert punkt 
xi og hver kontravariant vektor cd gives et af valget af koordinat­
system uafhængigt tal M (xf a*),  som er 0, dersom alle cd = 0, 
og ellers er positivt, og for hvilket M (x*,  a a*)  = a M (xf a^, 
a > 0, d.v.s. at invarianten M skal være positiv homogen af forste 
grad i cd, saaledes at

Invarianten
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er da positiv homogen af anden grad i a1’ og betegnes som den 
metriske fundamentalinvariant. Størrelserne

ai
d L (xi, ai)

d al

transformeres som komponenterne af en kovariant vektor: den 
til ai hørende kovariante vektor. Til a a1 hører a ai, men i almin­
delighed vil den til cd + bl hørende kovariante vektor ikke være 
m + bi. Og ligeledes vil i almindelighed det skalare produkt aibi, 
der er en invariant, ikke være lig med add. Man beviser let, at 
den til al + W hørende kovariante vektor er + bi, samt at 
aibi — add, hvis og kun hvis den metriske fundamentalinvariant 
er af formen 

hvor guc er komponenterne af en kovariant tensor af anden orden, 
kun afhængig af koordinaterne xd. Rummet siges da, som bekendt, 
at være Riemannsk.

Ved den numeriske værdi eller længden af den kontravariante 
vektor ai forstaas invarianten

I ai I = |/ cd at = [2 L = M (xd, a1).

Er I ai I = 1, siges ai at være en kontravariant enhedsvektor. Vi 
forudsætter, at der til hver kovariant vektor findes en entydig 
bestemt kontravariant vektor, hvortil den svarer, og ved den 
numeriske værdi af en kovariant vektor forstaas da den numeri­
ske værdi af den kontravariante vektor, hvortil den svarer. Altsaa 
I ad = I ad.

Er aibi = 0, siges den kontravariante vektor cd at staa vinkel­
ret paa den kovariante vektor bi. Kun for Ricmannske rum vil 
da den kontravariante vektor Id staa vinkelret paa den kovari­
ante Ui.

Invarianten M tillader nu umiddelbart indførelsen af bue­
længder: er xi = xi (t) en differentiabel kurve, hvor t er en 
parameter, vil vi ved buelængden fra det ved R til det ved t2 
bestemte punkt forstaa integralet
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Ved elementære regninger under hensyntagen til, at L er ho­
mogen af anden orden i x1, paavises umiddelbart den fortrolige 
kinematiske relation:

hvor ri er den til retningsvektoren hørende kovariante vektor. 
Af ^ki = 0 fremgaar, at a*  = 0 medfører:

(]% s
=0 og *( = 0.

I det Riemannske rum er da ogsaa

hvor a*  og À4 er de til akceleration og krumningsvektor hørende 
kontravariante vektorer. I eksistensen af denne kendte kinemati­
ske relation kan vi søge berettigelsen af ovennævnte definitioner 
paa akceleration og krumning.

Rette linjer er nu kurver, der overalt har krumningen 0. Og 
af det ovennævnte fremgaar da, at disse kurver er ekstremaler 
til variationsproblemet :

og til problemet:

0^ AI(x^, x{) dt — 0, d.v.s. ô Ç ds = 0.

II. Potentialfrie, tidsuafhængige systemer.

Vi begynder med at erindre om det velkendte forhold, at et 
dynamisk system, der er underkastet holonome, tidsuafhængige 
baand, og hvori ikke virker andre kræfter end de fra baandene 
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hidrørende reaktioner, kan beskrives ved hjælp af et variations­
princip

ô \ Lo dt = 0,

hvor t er tiden, og hvor den Lagrangske funktion er af formen

Lo = - gtk & xk,

saaledes at størrelserne gik udelukkende er funktioner af de gene­
raliserede koordinater xi. Af de til variationsprincippet hørende 
differentialligninger

dd_L._dL0 = 0
dtdåd dxi

følger straks
d LEnergien H = —°.i4—Lo = Lo = konst.,
da?'

og Lo betegnes som systemets kinetiske energi = totalenergien H. 
Lo er positiv-definit i aé’erne.

Ved gik er fastlagt en Riemannsk metrik i det ved koordina­
terne xi bestemte konfigurationsrum :

ds2 = - gtk dxi dxk,

hvor ds er bueelementet, og man har da for det dynamiske systems 
baner i dette rum

I ds\2 1 .j .i. rhrJ =-gucx*  xk = Lo, 
'dt] 2

saaledes at systempunktets hastighed altsaa er konstant.
Endvidere har vi for akcelerationen

d dL dL ds\2 d2s / V- = Oi = — A’i + — r i = —
dt d x1 dxi xdtl dt2

eller
ki = 0,

hvoraf ses, at banekurverne er rette linjer.
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Vi har hermed bevist, at det systemet beskrivende system­
punkt i konfigurationsrummet bevæger sig langs rette linjer med 
konstant hastighed. Hvilken velkendte lov kan karakteriseres som 
en generalisation af inertiens lov.

III. Tidsuafhængige systemer med skalart potential.

Dersom et dynamisk system udover reaktionskræfterne fra de 
holonome, tidsuafhængige baand er underkastet kræfter, der kan 
afledes af et tidsuafhængigt, skalart potential, er dets adfærd 
bestemt ved et variationsprincip som før, men med en Lagrange- 
funktion af formen

L = 1 gik & xk + i g (.r*)  = Lo + - g .

Energien er her

og den er ligeledes konstant. Størrelsen—-p er systemets poten­

tielle energi og Lo den kinetiske energi, der er positiv definit i 
æ’erne.

De til variationsprincippet hørende Lagrangeske ligninger kan 
skrives paa formen

d dL0 d Lo  d %g
dt d åd d x1 d x{

og lader vi som før den kinetiske energi Lo (x{, x*)  fastlægge den 
metriske fundamentalinvariant, har vi da

ß 1 q
akcelerationen = m — —-— = kraften.

dxi

Vi indfører nu en ved

L' = y2L0, A/' = y’Afo, ip = ip (xk)

bestemt ny metrik og benytter som parameter ikke buelængden 
u i den nye metrik, men buelængden s i den oprindelige metrik.
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Af

ii - \ M (xl, æ4) ds, xl = ----Xo 7 ds 
følger da

— = M' (xl, år4) = tpM0 (xi, år4) — ip, 
ds

idet 

3/0(æ4, år4) = I år41 = 1 (nummerisk værdi i den oprindelige metrik).

Ifølge det foregaaende er krumningsvektoren Å'£ i den nye metrik 
givet ved

du J d dM{ (ar4, år4) dM' | | d d (Moy) d |
ds Ids då-4 dar4 I I ds dxl dxi I

Sammenholdes dette udtryk for 7c,- med

Tager vi kun saadanne banekurver i betragtning, der hører til 
samme værdi E af energien, altsaa saadanne for hvilke

E

og sættes



Nr. 12 15

I den nye metrik vil altsaa de til samme energi hørende banekurver 
være rette linjer. Men den hastighed

du
dt

hvormed disse banekurver gennemløbes, vil ikke være konstant. 
Det er altsaa ikke lykkedes at redde hele inertiens lov paa denne 
maade.

Det her fremforte er selvfølgelig ikke andet end det velkendte 
Maupertuiske princip

<5Js‘|/e = 0,

der først blev helt korrekt formuleret af Jacobi.

Fortolker vi i den geometriske optiks aand som

brydnings forhold n i det ved den oprindelige metrik bestemte rum, 
er dette variationsprincip analogt med det Fermatske princip for 
isotrope legemer:

Ô \ nds = 0 .
•'«1

For dynamiske systemer, hvori ogsaa optræder vektorpotentialer, 
altsaa hvis Lagrangefunktion er af formen

L = -gtk^x*  + gi & + -g,

er det da muligt at udvide den her anførte optiske analogi, idet 
saadanne systemer svarer til anisotrope, optiske medier. Imidler­
tid kan man — som vi nu skal se — ogsaa gaa en anden vej, idet 
man indfører en ny generaliseret koordinat, altsaa udvider sy­
stemets dimension med 1.
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IV. Konservative systemers geometrisering gennem 
indførelsen af en ny koordinat.

Det drejer sig her om anvcldelsen af en oprindeligt af Maxwell 
og Lokd Kelvin [W.Thomson 14] antydet tanke, ifølge hvilken 
former for potentiel energi skulle kunne fortolkes som hidrørende 
fra kinetisk energi af »skjulte« legemers bevægelse. Senere er 
denne tanke i almindelig form fremsat af J.J.Thomson [13] i 
dennes inspirerende høg Applications of Dynamics to Physics and 
Chemistry. Vi gengiver her J. J. Thomsons betragtninger med den 
trivielle tilføjelse, at vi ogsaa tager sigte paa problemer med vektor­
potential.

Udgangspunktet er den velkendte Routhske transformation: 
hvis de generaliserede koordinater deles i to grupper xl, i = 
1,2, ... /, og ya, a — 1,2, .. , m, og hastighederne ya udtrykkes 
som funktioner af xi, ya, xi og de ved ligningerne

dL

definerede impulser pa, vil systemets bevægelse være bestemt ved 
differentialligningerne 

d dR
dt dxa

dR
dxa

(»Lagrangeligningerne«)

(»Hamiltonligningerne«),

hvor den Routhske funktion

R = L — pai/a

skal opfattes som funktion af yu, x*  og pa.
Er nu systemet saaledes beskaffent, at dets potentielle energi 

er nul, kan dets Lagrangefunktion skrives som

1 1 R
L = - gik X1 xk + gia xl ija + - gaß ÿa ÿp 
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med de til ya hørende impulser

p« = gia x*  + gaß

og den Routhske funktion

R = L—paya = -gik&x*  ~gaßya ÿV.

Og antager vi yderligere, at koordinaterne ya er cykliske (ogsaa 
kaldet ignorable), altsaa at L kun er afhængig af æ’erne, æ’erne 
og z/’erne, men uafhængig af z/’erne, vil ifølge de ovennævnte 
ligninger impulserne pa være konstante. Da ya kan skrives paa 
formen

ga — di + ga, [g^ og ga funktioner af xa og pa],

bliver R af typen

R — ± Tik xi xk + yixi ,

hvor alle y’erne er funktioner af æ’erne og de konstante per. 
For fastlagte værdier af p’erne kan det ved de generaliserede 
koordinater æ*  bestemte delsystem da udelukkende beskrives ved 
de Lagrangeske ligninger

d dR dR n n n, t------------------= 0, R = R (xl, xz, pa = konst.)
dt d cci d xi

og altsaa karakteriseres som et dynamisk system med Lagrange- 
funktionen R, altsaa et system med skalart og vektoriel potential.

Der gives saaledes former for potentiel energi, som kan for­
tolkes som hidrørende fra bevægelser i mere omfattende poten­
tialfrie systemer, hvor legemerne kun er bundet af geometriske 
baand.

Det var II. Hertz’ [5] grundlæggende tanke, at alle i naturen 
forekommende bevægelser skulle kunne fortolkes paa denne 
maade. Hans udgangspunkt er et univers af elementarpartikler, 
der bevæger sig i det sædvanlige, 3-dimensionale, euklidiske 
rum, og som kun er bundet til hinanden med rent geometriske 

Dan.Mat.Fys.Medd. 30, no. 12. 2 
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baand. Den samlede bevægelse af dette univers beskriver Hertz 
ved indførelsen af et flerdimensionalt euklidisk konfigurations­
rum og under anvendelsen af det grundlæggende princip, at 
bevægelsen i dette foregaar med konstant hastighed langs baner, 
hvis krumning i hvert punkt er den mindst mulige, som er 
forenelig med de geometriske baand — et princip, der er iden­
tisk med Gauss’ sætning om den mindste tvang. Hvad vi iagt­
tager i virkeligheden er kun delsystemer af dette univers, og for 
disses bevægelser kan dette grundlæggende princip ikke opret­
holdes, og det kan her være praktisk at indføre en potentiel 
energi. Hermed er da kraftbegrebet reduceret til en rent mate­
matisk hjælpestørrelse, og det grundlæggende begreb er de geo­
metriske mekanismer, hvis fravær føltes som et saa stort savn, 
da Newton indførte fjernkræfterne i mekanikken. En smuk frem­
stilling af væsentlige grundtræk af den Hertzske mekanik er givet 
af H. A. Lorentz [7].

Det rum, hvormed Hertz arbejder, er det sædvanlige 3-di- 
mensionale, euklidiske rum, og det konfigurationsrum, han af 
matematiske hensyn indfører, er ligeledes euklidisk (i det væsent­
lige er koordinaterne i dette samlingen af elementarpartiklernes 
carlesiske koordinater i det sædvanlige rum). Der er her altsaa 
endnu ingenlunde tale om en geometrisering i den forstand, at 
selve rummets struktur tages op til revision i forbindelse med 
fysikkens problemstilling — og det samme gælder J. J. Thomsons 
betragtninger, der iøvrigt slet ikke er knyttet til geometriske over­
vejelser. Derimod foreligger der med Hertz’ betydelige værk for 
første gang en gennemarbejdet anvendelse af den flerdimensio­
nale, euklidiske geometris udtryksmaade til brug i mekanikken.

En væsentlig mangel ved den Hertzske mekanik er det, at 
han slet ikke paaviser, at det virkeligt er muligt paa rimelig vis 
at realisere de kendte naturkræfter ved hjælp af geometriske baand 
i det sædvanlige rum.

En geometrisering i mere moderne forstand af den klassiske 
fysik kan nu opnaas paa følgende maade:

Lad det betragtede konservative system være beskrevet ved 
Lagrangefunktionen

i, k = 1,2, . . , n,
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hvor g’erne er tidsuafhængige funktioner af x’erne. Ser vi paa 
det ved Lagrangefunktionen

a, ß = 0,1, 2, . . , n

bestemte dynamiske problem, er hermed givet et (n + todimen­
sionalt rum med den Riemannske metrik

Vi forudsætter nu, at æ° er cyklisk, altsaa at

Po — goi^
9oo

og betragter kun saadanne baner i rummet, langs hvilke p0 til 
et givet tidspunkt og hermed til alle tidspunkter er 1. Den Routh- 
ske funktion hørende til det ved koordinaterne xi beskrevne 
undersystem er da 

og vælges nu størrelserne g'ik, g'oi og g'oo saaledes, at

2*
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saaledes at det oprindelige system kan opfattes som et delsystem af 
et potentialfrit system, hvis dimension er 1 større, og hvis kon- 
fig ur ato nsrums metrik g'C(ß er bestemt ved det oprindelige systems 
metrik gik og potentialerne gt og g.

Fastholdes denne metrik, men vælges værdien p0 for det til 
x° hørende moment, vil det ved xl beskrevne delsystem have 
Lagrangefunktionen (Ronlhfunktionen) :

L = | dik & ±k + P*  di & + I .7,

d.v.s., der foreligger et system af samme natur som det oprinde­
lige, men i hvilket der optræder andre konstanter i potentialerne.

V. Tidsafhængige systemers geometrisering.

Selv for iagttagere, der ikke — som vi hidtil stiltiende har for­
udsat — er i hvile i forhold til et inerlialsystem, gælder, at de 
mest almindelige tidsafhængige systemer, vi er stødt paa i den 
klassiske fysik, kan beskrives ved et variationsprincip af formen

med en Lagrangefunktion af typen

L = - gik xd xk + gix*  + -g, i, k = 1, 2, . . , n,

hvor p’erne er funktioner af de generaliserede koordinater og af 
tiden t.

For at naa frem til en geometrisering af saadanne systemer, 
bemærker vi først, at hvis hastigheden x° af en cyklisk koordinat 
kun optræder i kombinationen

L = • • • + x° x + • • • ,

hvor x er en af de øvrige koordinater, er
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dL 
d x°

x = konst.,

d.v.s. x = konst, t. + konst, saaledes at x kan benyttes som tids- 
maal.

Metoden er da følgende: af ovennævnte formel for Lagrange- 
funktionen følger

L dt2 = - g ne dxi dxk + gi dxl dt + — g (dt)2,

hvor </’erne altsaa er funktioner af xi og t. Erstatter vi her rent 
formelt t med xn+1 og tilføjes leddet dx°dxn+1 faas et (n + 2)- 
dimensionalt problem med den Riemannske metrik

ds2 = -gtk dxidxk + Tjtdx1 dxn+1 +-</ (dxn+1)2 + dx°dxn+1,

hvor gik, g i og g er de funktioner, der fremkommer ved i (7’erne 
at erstatte t med æw+1. I dette rum vil vi nu undersøge det nye 
dynamiske problem, hvis Lagrangefunktion er

L' = -gik&x11 + gixixn+1 + -# (æn+1)2 + xQxn+1

hvor x° altsaa er cyklisk. Her indgaar æw+1 — uafhængig af dets 
forhistorie — som en rumlig koordinat paa lige fod med æderne, 
og t er stadig parameteren, saaledes at x betyder dxjdt.

Da x° kun optræder i kombinationen æ°æn+1, er xn+1 kon­
stant = den til .r° hørende impuls p0, altsaa

X-w+1 = pot + q.

Vi vælger de baner i det (n + 2)-dimensionale rum, hvor p0 = 1 
og q = 0, saaledes at tidsafhængigheden af xn+1 er givet ved 
xw+1  / j almindelighed er xn+1 ikke cyklisk — dette gælder 
kun for oprindeligt tidsuafhængige systemer.

Det udvidede systems Lagrangefunktion er konstant, da L' er 
potentialfri og eksplicit tidsuafhængig. Vi har, idet xn+1 = 
po = 1 :
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L' — -gucxtx*  + gtx*  + - g + i'° = konst. — a

eller

L' = L + æ°,

hvor L er funktionen

L(xl, x* , xn+1) — - gucx1 xk + 9^ +29'

Det ved koordinaterne bestemte undersystem af dimensionen 
n. har den Routhske funktion

= L'—pn+iXn+1—Xn + 1 X° =

L —pn+i,

og disse koordinaters udvikling er da bestemt ved differentiallig­
ningerne

dd(L — pn+1) d (L — pn+1) _
dt dx1 d xi

der jo ogsaa gælder, selvom xn+1 ikke er cyklisk. Men da den 
Routhske funktion skal opfattes som funktion af x4', xn+1 og 
pn+i (samt af p0, men denne størrelse er jo konstant lig med 1), 
forsvinder leddet pn+i under differentiationerne, og vi faar

d dL dL_
dt dxi dxi

Imidlertid er for enhver funktion f (x1, x1, æn+1) og æw+1 =

df (x1, xi, xn+r) d~f .. df . . df . , 
dt dx1 dxl dxn+1

df .. df ... t df df .. df . df dfCx^x^t)
-----X1 +------X1 + --------  = -----X1 +------xl -j- — — —----------- - , 
dx1 dxl dxn+x dxi dx1 dt dt

saaledes at 
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d dL_dL () 
dt dxl dxl

d.v.s. bevægelsesligningerne for det oprindelige system. Og her­
med er da bevist at det oprindelige system med Lag range funktionen 
L er det ved koordinaterne xi bestemte delsystem af det (n + 2)- 
dimensionale, eksplicit tidsuafhængige og potentialfrie system. For­
udsat, at vi udvælger de baner i totalsystemet, hvor xn+1’s tids­
afhængighed er givet ved xn+1 = t, altsaa forudsat, at konstanten 
Po gives værdien 1. Dersom p0 ikke vælges lig med 1, føres vi for 
det ved xi beskrevne undersystem til den Routh-Lagrangeske 
funktion

L = ^-guc^x*  + gi&po

altsaa til et system af samme natur som det oprindelige, men med 
ændrede værdier for konstanterne i potentialerne.

Af (I) følger

rr° = « — L = a — L (xl (tj, xl (f), .xn+1(/))

eller, idet xn+1 — t:
x° = at — ^Ldt + ß,

Jo

hvor a og ß er konstanter. I x°’s tidsafhængighed indgaar altsaa 
virkningsintegralet

Cl dt.
Jo

Den her opstillede metrik er i en anden sammenhæng angivet 
af L. P. Eisenhart [3], som i tilknytning til ovennævnte bestem­
melse af x° som funktion af tiden har vist, at den tillader en 
overmaade smuk og forenklet fremstilling af den Hamilton-Jaco- 
biske integrationsteori.

Det skal tilslut bemærkes, at ved de ovennævnte udvidelser 
ophører metrikken i almindelighed med at være positiv-definit i 
æ’erne, hvilket medfører nødvendigheden af i overvejelserne at 
udelukke de saakaldte nullinjer, d.v.s. linjer langs hvilke den 
metriske fundamentalinvariant forsvinder.
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I stedet for at indføre baade t = xn+1 og x° som nye koordi­
nater kunne man have gaaet følgende vej, idet man giver afkald 
paa ønsket om, at det betragtede rum skal være Riemannsk:

Indfører vi i Lagrangefunktionen

L (x4, x{, t)

en ny parameter u i stedet for t, kræver variationsprincippet

vu dt
ô\L dt = ô \ L —- du — 0,

•k» du

at L transformeres til

og opfattes nu t som en variabel xn+1 paa lige fod med de øvrige 
koordinater, kan L' skrives paa formen

L' = L (x1, xi/xn+1, xn+1) xn+1,

hvor * betyder differentiation med hensyn til u, saaledes at

X — x $ X w +1-

Som man ser er L' homogen af første grad i samtlige »hastigheder«

X1, X2, • • • , xra, xn+1,

og man kan da benytte — (Z/)2 som metrisk fundamentalinvariant 

i en Finslersk geometri, saaledes at banekurverne i det herved 
bestemte (n + l)-dimensionale rum bliver rette linjer. For nær­
mere orientering vedrørende geometrisering i denne forstand — 
hvor man altsaa opgiver ønsket om at arbejde i det mere anskue­
lige Riemannske rum — henvises til to afhandlinger af H. Rund 
[9 og 10] samt til nogle mere overfladiske betragtninger af C. Lanc- 
zos [6]. J. L. Synge [12] har fornylig vist det nære slægtskab, som 
består mellem denne metode og den Hamiltonske optiske analogi 
i dynamikkens integrationsteori.
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Summary.

The possibilities of giving a geometrical description of clas­
sical mechanics are discussed, starting from a short historical 
review. A geometrization of this kind requires the general so- 
called Finsler-geometry, a short account of whose main fea­
tures, adapted to the purpose, is given. It is then shown that 
the introduction of an extra coordinate, a so-called cyclic co­
ordinate, allows a reduction to the more specialized Riemann 
geometry. We are here concerned with a slight change in an idea, 
originally formulated by J. J. Thomson, which in particular forms 
the basis of H. Hertz’ endeavours to eliminate the concept of 
force in mechanics. It is finally shown that this geometrization 
also can be applied to time-dependent, holonomie dynamical 
systems, leading to a geometrical description which already has 
been studied by L. P. Eisenhart.
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1. Introduction.

The hyperfine structure (hfs) of spectral lines of krypton have 
previously been examined by various investigators making 
use of normal krypton containing the isotopes in their natural 

abundances. The purpose of the earlier investigations was to 
measure interferometrically with the greatest possible accuracy 
the wavelengths of certain krypton lines, in an effort to confirm 
the suggestion that one of them might be more suited to be the 
primary standard of wavelength than the red line of cadmium. 
In the course of such investigations C. J. Humphreys1’ in 1931 
discovered and measured the hfs of several krypton arc lines, 
but did not, however, assign the hfs to nuclear properties.

A higher resolving power was obtained in 1933 by H. Kop- 
fermann and N. Wieth-Knudsen2>, who succeeded in analysing 
the hfs of some partially resolved lines amongst the group of 
strong lines in the infra-red. The greater part of the total intensity 
of each of these lines was concentrated in the central component 
and this was described as being due to the even isotopes 
(Z = 78, 80, 82, 84, and 86), which compose altogether 88.5 °/0 
of natural krypton, whereas the odd isotope (Z = 83), com­
posing the remaining 11,5 °/0, was held responsible for the faint 
satellites. By assuming the isotope shift to be negligible the 
authors could determine the most probable value of the nuclear 
spin of Ar83 to be I = 9/2.

The determination of such high spin values is always rather 
uncertain when based upon the Landé interval rule; this is 
especially the case, when deviations from this rule occur, caused 
by an electric quadrupole moment, which in the following years 
was found to exist for a number of nuclei. For these reasons 
H. Korsching3) preferred to measure the relative intensities of 
the hfs components; his results, however, were found to con- 

1*  
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firm the spin value given by Kopfermann. Furthermore, Kor- 
sching measured deviations from the interval rule for one level 
and calculated thereby the quadrupole moment of Kr83 to be 
Q = +0.15 X 10—24 cm2.

2. Experimental Procedure.
The arc spectrum of krypton was excited in an ordinary

discharge tube, which was made of pyrex glass and given the
shape shown in fig. 1. The capillary bore was 1 mm and the 
total volume of the tube was 25 cm3. The cylindrical electrodes 
consisted of aluminium plates 2| X 4 cm wrapped around 
themselves; one of these, T, had previously been irradiated in 
the isotope separator with ions of the isotope in question.

fhe procedure in preparing the tube was the following: First a 
helium tube of the shape mentioned, in which two non-irradiated
aluminium electrodes were mounted, was manufactured in the 
usual way, i. e. the glass walls were degassed by heating with 
a flame and both electrodes were degassed thoroughly by repeated

The smallness of the splittings in the hfs of the krypton lines 
and the unfavourable isotopic composition with respect to Kr83 
in natural krypton makes investigations with separated isotopes 
most desirable. Such investigations have been made possible 
by the development of isotope separators during and after 
World War II. The commencement of spectroscopic work with 
separated isotopes of the noble gases was brought about in 1949 
by means of an electromagnetic isotope separator built by
J. Koch4) al the Institute of Theoretical Physics in Copenhagen, 
where use was made of a new technique, designed by J. Koch5), 
for collecting gaseous ions. This technique is based upon the 
fact, that when gaseous ions are accelerated by a voltage of 
about 50 kV and allowed to hit an aluminium target, they will 
penetrate the surface of the target to a certain depth, from which 
they can only be released by heating. Some preliminary results 
have been published on the isotopes of neon, krypton and 
xenon6), and a more exhaustive publication has been given on 
the odd xenon isotopes7). The present paper contains results 
concerning even as well as odd isotopes of krypton.
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heating with the aid of a high-frequency coil, which induced 
currents in the aluminium. The tube was then filled with helium 
to a pressure of a few mm of Hg and sealed oil. To make sure 
that no leaks existed, it was ascertained that the tube still emitted 
a pure helium spectrum after having stood for a day or two. 
The tube was then re-opened and the horizontal electrode was 
replaced by the target plate 7’, containing the isotope in question.

Helium was inserted for the second time and after sealing off 
the spectrum emitted was again seen to be purely helium. 
Finally, the target electrode was heated by induction currents 
in order to release the krypton gas collected in it. Helium now 
acts as a carrier gas enabling the tube to emit a fairly strong 
krypton spectrum, in spite of the small amounts (50 to 100 
micrograms) of krypton available. In order to avoid impurities 
the target plate was handled exclusively by cleansed tools, and 
furthermore, the target plate had been degassed thoroughly 
before it was used as a collector.

The pressure of helium was chosen at 7 mm Hg, which was 
found to give the optimum excitation conditions. The tube was 
fed with an a.c. from a 7000 volt transformer, connected in 
series with a balance resistance of 300 000 ohm to enable the 
tube to be run at a low current (approx. 5 mA) in order to 
get as sharp lines as possible. The Doppler broadening was 
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further diminished by inserting the tube in an unsilvered Dewar 
vessel containing liquid air to the level L indicated in fig. 1.

The spectroscopic equipment consisted of a Steinheil 3-prism 
glass spectrograph with focal lengths of 650 and 640 mm for the 
collimator and the camera respectively, and a Fabry-Perot 
etalon with 60 mm plates, placed in the parallel beam of light 
between collimator and prism. By means of an achromatic lens 
with /” = 195 mm a double-sized image of the capillary tube 
was projected onto the slit. This illuminating lens, having a dia­
meter of 60 mm, was able to produce full illumination throughout 
the whole length of the spectral lines.

Special care was taken in adjusting the Fabry-Perot étalons, 
whose construction allowed the existence of optical contact 
between the quartz plates and the invar spacer to be verified 
by the observation of Newton’s rings. The final adjustment 
was carried out with the light from a low pressure mercury 
lamp and making use of a low power telescope (10 X 80), 
whose large exit pupil (8 mm) made it possible to observe the 
interference rings, even when the eye was moved into different 
positions. The following spacers were used: 12.5 — 15 — 25 - 
35 — 50 mm, and the exact thicknesses were measured to an 
accuracy of 10~5 mm by means of spectral lines of interfero­
metric ally known wavelengths.

The strong infra-red krypton lines were photographed on 
Kodak IRER and Eastman IN emulsions and the visible lines 
on ordinary Kodak, Ilford or Agfa plates. The plates were 
measured with a Zeiss comparator, and the line separations were 
evaluated by the standard method of quadratic interpolation. 
For clearly separated lines an accuracy of about 0.2 X 10~3 cm-1 
was obtained.

3. Isotope Shifts between the Even Isotopes*.

* A short communication of these results was given at the Rydberg Cen­
tennial Conference in Lund in July 1954.

In the case of elements containing their natural mixture of 
isotopes the small isotope shifts of spectral lines can only be 
observed and measured down to a certain lower limit. This 
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limit is set partly by the resolving power of the spectrographic 
equipment and partly by the finite line width due to the light 
source, and is usually of the order of magnitude 0.01 to 0.02 cm-1, 
depending on the wavelength region. For krypton the isotope 
shifts are below this limit and can therefore not be observed by 
using unseparated krypton.

By using separated isotopes, however, it is possible to detect 
and measure still smaller shifts, far beyond the limit set by 
the resolving power. This is due to the well known fact, that 
the uncertainty involved in the measurement of the centre of 
gravity of a line is some ten times smaller than the half intensity 
width of the line itself.

Among the even krypton isotopes only 82, 84 and 86 are 
abundant enough to allow one to collect a sufficient amount 
within a reasonable time, and the present investigation is there­
fore confined to these three isotopes. Spectral tubes were made 
containing Kr82, Kr8i and Kr88, respectively, and the tubes 
were filled with helium to approximately the same pressure 
(i 1 mm Hg) in order to avoid relative displacements effectuated 
by pressure differences.*  By means of these tubes interferometer 
spectrograms were made, with spacers from 25 to 50 mm, using 
the following method of alternating exposures: First an exposure 
of, say, AT84 was made; then the plate holder was displaced 
vertically and an exposure of Ar82 was made on a new area 
of the same plate; finally Ar84 was exposed again after a renewed 
displacement of the photographic plate. This method allows one 
to control the constancy of the optical device from the beginning 
to the end of the exposures. Only photographs showing a suf­
ficient constancy were used for measurements. During longer 
exposures the etalon was placed in an air-tight box (supplied 
with plane windows) in an effort to counteract the effect of vari­
ations in the pressure and temperature of the surrounding air. 
For the stronger lines, which could be photographed in a few 
minutes, this precaution could often be avoided.

From such exposures the isotope shift is easily determined 
by measuring the diameters of the interference rings of both 
isotopes; the difference between these diameters then simply

* Unpublished work by V. Middelboe on Kr8i shows that the displacement 
caused by a helium pressure difference of 1mm Hg is less than 0.0001 cm-1. 
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corresponds to the shift between the isotopes. Both the shifts 
82—84 and 84—86 were measured and found to be identical 
within the experimental error. Only the strongest krypton lines 
have been investigated, namely the Is — 2 p combinations (using 
the Paschen notation) in the infra-red and visible regions, and 
the Is — 3p combinations in the blue part of the spectrum. The 
results are collected in table 1, which for each line contains the 
mean value of the measurements made on a large number of 
plates; the figures are expected to be accurate to within 10 °/0.

Table 1.

Wave­
length

Å
Transition Shift 

cm-1
Wave­
length 

Å
Transition Shift 

cm-1

8928 l'S5 2 Pio 2.8 x IO“3 7685 ls2 - 2px 4.4 x IO"3
8776 1«4 2Ps 3.7 7601 ls5 — 2p6 2.4
8508 ls2 — 2p4 4.1 7587 ls4 — 2p5 3.8
8298 ls4 — 2p7 3.5 5870 ls4 - 2p2 3.8
8281 ls2 2p3 4.4 5570 ls5 — 2p3 2.9
8263 l.s2 — 2p2 4.4 4502 ls4 3Ps 4.8
8190 Is, — 2p6 3.4 4463 ls4 3p7 5.0
8112 1«5 — 2p9 2.2 4453 1S4 — 3p« 4.9
8104 1«5 — 2p8 2.5 4376 1S4 — 3p5 4.7
8059 ls3 — 2p4 2.6 4362 ls5 3 Pio 5.0
7854 ls3 — 2p3 2.8 4319 1«5 — 3p9 4.0
7694 ls5 - 2p7 3.5 4273 1 s5 ' 3po 4.0

The sign of the observed shifts was in all cases such that the 
wavenumbers increased for increasing mass numbers, i. e. in 
the order 82—84—86, which is the order to be expected when 
dealing with a normal mass effect. The magnitude of the observed 
shifts also corresponds rather nearly to that to be expected from 
a mass effect.

As first recognized by N. Bohr the mass effect for light ele­
ments can be ascribed to the motion of the nucleus, the finite 
mass of which varies slightly from one isotope to another. 
According to Bohr’s theory this gives rise, in the case of one- 
electron spectra, to a displacement A E of a level E given by 
the formula:
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AE = E
Mi • M2

• ni

where Mx and Jf2 are the masses of the two isotopes in question, 
and m the mass of the electron, which is 1/1836 = 5.49 X 1()—4 
in chemical mass units. For krypton with Mx = 82 and d/2 = 
84 one gets

AE = on 2 ». 5.49 X 10-4 = 1.6 X 10-7E.
82 x 84

By means of this formula the term displacements in table 2 have 
been calculated in units of 10—3 cm—1. In atoms with more 
than one electron there is, in addition to this simple mass effect, 
a specific mass effect due to correlations in the motions of the 
electrons.

The final comparison between the measured line shifts and 
the calculated term displacements cannot be made until further 
measurements of higher series members have furnished absolute 
values for the term shifts. Certain information can be obtained, 
however, by making the rather crude assumption that the dis­
placements for the higher terms (2p and 3p) are due mainly 
to the simple mass effect. Consequently, by adding the observed 
line shifts to the theoretical displacements for the 2p and 3p 
terms one can obtain empirical mean values for the 1 s term 
displacements, which can then be compared with the theoretical 
ones. This has been done in table 2 under the columns A Ecaic 
and ZlEobs.

From these figures it may be stated that for 1 s5 and 1 s3 
only small deviations occur, whereas for 1 s4 and especially for 
1 s2 the simple mass effect alone cannot be responsible for the 
observed effect. In spite of the smallness of the observed shifts 
in krypton it is reasonable to conclude, that these shifts for the 
most part can be accounted for by Bohr’s formula, and that 
only for the deepest term (ls2) a specific mass effect, of the 
order of magnitude + 2 X 10—3 cm-1, can be established with 
certainty.

This result is in accordance with those found by R. Ritschl 
and H. Schober8) in neon, where absolute values of term shifts 
were obtained, and by H. Kopfermann and H. Krüger9) in



10 Nr. 13

Table 2.

E d ^cal d -^obs d -^obs d -^cal

1«5 32943 5.3 5.8 0.5
ls4 31998 5.1 6.5 1.4
ls3 27723 4.4 5.1 0.7
l.s2 27068 4.3 6.7 2.4

d ^cal d ^cal

2 Pio 21746 3.5 3 Pio 10028 1.6
2p9 20620 3.3 3 Pg 9799 1.6
2 p8 20607 3.3 3pg 9793 1.6
2p7 19950 3.2 3p, 9601 1.5
2Pß 19791 3.2 3 Pg 9552 1.5
2p5 18822 3.0 3p5 9153 1.5
2p4 15319 2.5
2p3 14996 2.4
2 P2 14970 2.4
2 Pi 14060 2.2

argon, where only relative shifts were 
results were confirmed later by Horst 
rated isotopes.

measured ; the
Meyer10) using

latter
sepa-

4. Hyperfine Structure and Term Intervals of Ær83
The purpose of investigating the odd krypton isotope AT83, 

procured by the separation of natural krypton, was to obtain 
further evidence on the spin value, previously found, and to 
get an improved value for the electric quadrupole moment of 
this nucleus. Although the isotopic separation in the present 
case appeared to be not quite perfect, owing to the large initial 
abundance of the two neighbouring isotopes 82 and 84, the hfs 
components of all the observed lines were much better resolved 
than for natural krypton. The six lines listed in table 3 were 
selected for measurements, as these lines were by far the best 
resolved and were most easily analysed. Previous investigators, 
working with unseparated krypton, also used these lines.
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Table 3.

Wave­
length

Å
Transition

Total 
splitting 

cm-1
Spacer, 

max. mm. Remarks

8508 ls2 — 2p4 0.245 15 Control of ls2 and 2p4
8281 1s2 2 p3 0.321 12.5 Control of ls2 and 2p3
8059 1' 2 Pi 0.192 15 Gives 2Pi splitting
7854 ls3 —2p3 0.075 35 Gives 2p3 splitting
7685 ls2 — 2px 0.246 15 Gives ls2 splitting
5570 ls5 — 2p3 0.238 15 Gives ls5 splitting

Each of these lines was measured on a large number of 
plates, and the greatest importance was attached to the choice 
of the largest etalon spacer that could be used in each particular 
case without the overlapping of neighbouring orders. The follow­
ing diagrams, figs. 2—7, show the term transitions and below these

the line structures; beneath the latter the mean values of some of 
the measured intervals are given in units of 10—3 cm —1, while 
at the right of each term diagram the finally adopted term inter­
vals are written in the same units. In each line picture the hfs 
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components are fully drawn and the component due to the even 
isotopes is shown hatched. The heights of the lines arc drawn 
proportional to the calculated intensities. The reader can find the 
magnitude (in units of 10~3 cm-1) of any required line interval, 
which is not already given, by measuring the particular distance

Fig. 3.

in the line picture to the nearest Vio mm and multiplying by 10. 
Further, it may be instructive to compare the diagrams fig. 2—7 
with the corresponding enlarged photographs of the line structures 
printed on the special plate at the end of this paper.

In order to explain how the term splittings have been evalu­
ated from the fine structures, the individual lines will now be 
discussed in the proper logical order. For 8059 A, 1 s3—2p4, 
fig. 2, the line structure should be identical with the splitting of 
2/q, as l.$-3 with j = 0 cannot split. However, only the total 
splitting can be measured with certainty, because the distance 
between the component (hatched) coming from the even isotopes 
and the central lifs component is only about 0.016 cm-1, 
and this gives rise to an attraction of the central component 
and thereby a distortion of the intervals.
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In order to overcome this difficulty the lines 7685 and 8508 
were used as auxiliary lines. For 7685 Ji, ls2— -Pi> fig- 3, the 
upper term 2pr cannot split, and the line structure therefore 
gives the splitting of 1 s2. Here the disturbance of the intervals

Kr83 8508 À
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107.0

139.2
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e

----- 245.2--------------—i

Fig. 4.

is considerably less than for 8059, as the separation of the 
hatched component and the central hfs component is more 
favourable, the distance between them being about 0.027 cm-1.

The third line 8508 X 1 s2— 2pi, fig. 4, is a combination 
between the two terms, which have just been discussed, and the 
measured intervals of this line can therefore give improved 
values for the splittings of both these terms. For instance the 
distance e—g gives the larger interval of 2p4, and the distance 
e—f subtracted from the total splitting of 2 p4 gives the larger 
interval of ls2. By means of the three lines discussed so far the 
splittings of the terms 1 s2 and 2p4 can be found without any 
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one-sided disturbances and with an accuracy of about ± 0.2 X 
10—3 cm-1.

A method similar to the one discussed above was used to 
determine the splitting of 2p3. For the line 7854 Å, ls3 — 2p3, 
fig. 5, only the total splitting is reliable, but the line 8281 Å, 
1 s2 — 2p3, fig. 6, yields the intervals of 2p3 undisturbed by the

I 34 I 41 I
I—75.3—1

Fig. 5.

2P3 I ' g 42.0

i = 1 I ' \ ; i ! I 33.2
I 5

Kr83 8281 Â

c

M

3 C 1 ( c

_____________________

bee f

33.11—----------------- 246.5------------------1 41.8
t—107.1—I

g

Fig. 6.

hatched component, namely as the distances a—b and f—g. 
Furthermore, the distances a—c and b—f, fig. 6, are equal to the 
smaller interval and the total splitting of ls2, respectively, and 
this gives a final check on the hitherto measured intervals.

The two intervals of 2p3 then being established with some 
certainty, the next problem was to find the intervals of the term 
1 .ss by means of the line 5570 A, 1 s5 — 2p3> fig. 7. For this par­
ticular line the great improvement achieved by the use of sepa­
rated isotopes is most clearly demonstrated by the fact, that it 
was possible to distinguish seven separate components. In fig. 7 
it will be seen, that the first (largest) interval of 1 s5 is equal to the 
distance h—i, and that the second interval can be found by means
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of the distance e—h, when the larger interval of 2p3 is known. 
The third interval of 1 s5 is equal to the distance d—e and is found, as 
it happens, to coincide with the smaller interval of 2p3. Finally, the 
fourth and smallest interval of 1 s5, namely a—b, is so small that a 
considerable mutual attraction of a and b is believed to take 
place, with the consequence that the directly measured value

5570 Å

1
j

Fig. 7.

(0.018 cm—1) for the distance a—b is too small. The magnitude 
of the mutual attraction could, however, be evaluated in the 
following way. The distance from the line c + d to the dis­
placed position of b was found by measurement to be 0.036 cm—1 ; 
the true distance between these two lines is seen by consulting 
the term diagram to be 0.033 cm—1 ; consequently, the amount 
by which b has been displaced towards a equals 0.003 cm—1. 
The corresponding displacement of a towards b can then be 
calculated to be 0.002 cm—1. This value was obtained by assum­
ing the line shape to be Gaussian, i. e. mainly due to Doppler- 
broadening, and by taking the intensity ratio of a and b into 
account. In this way a total mutual attraction of 0.005 cm-1 is 
found, which, when added to the directly measured distance 
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from a to b, gives the corrected value 0.023 cm-1 for the smallest 
interval of ls5. The finally adopted intervals for ls5, written in 
fig. 7, will be discussed later.

5. Nuclear Moments of Ær83.
It appears from the fine structure quantum numbers F, 

written opposite each term component in the figs. 2—7, that one 
has adopted the spin value I = 9/2. If one tries to confirm this 
value by means of the Lande interval rule, one does not get a 
complete agreement for any of the observed terms. Table 4 
shows the intervals calculated from the measured total splittings 
by the interval rule for I = 9/2, together with the observed inter­
vals. The deviations, which are large for 1 s2 and ls5 and rather

Table 4.

ls2 ls5 2p3 2 p4

obs. calc. obs. calc. obs. calc. obs. calc.

139.2 ± 0.3 135.4 60.3 ± 0.5 53 42.0 ± 0.4 41.4 105.0 ± 0.2 105.8
107.0 ± 0.3 110.8 45.7 ± 0.5

33.2 ± 0.5
23 ± 1

45
36
28

33.2 ± 0.4 33.8 87.4 ± 0.2 86.6

246.2 ± 0.3 246.2 75.2 ± 0.4 75.2 192.4 ± 0.2 192.4

162 ± 1 162

small for 2 p3 and 2p4, must in all cases be ascribed to the action 
of a quadrupole moment of the nucleus. Even the term 2/)4, 
which in pure jj-couping should be expected to have a spheri­
cally symmetrical electric field in which the quadrupole moment 
of the nucleus should produce no effect, shows a deviation appre­
ciably larger than the uncertainty of the measurements. The same 
is found to be the case on calculating the intervals for I == 11/2 ; 
one then gets a deviation for 2/q, which is of the same size but 
of opposite sign.

This dilemma has recently been resolved by an investigation 
of the hyperfine structure of some krypton lines using the radio­
active isotope AT85, produced by fission processes.11) Having 
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two odd isotopes of the same element at ones disposal, i. e. 
two different nuclei with identical electron configurations, one 
must find that the ratio between the two deviations from the 
interval rule is constant from term to term, this constant simply 
being equal to the ratio between the quadrupole moments of the 
two nuclei. This was found to be the case only when assuming 
I = 9/2 for both isotopes. The deviation found for 2 may then 
be explained as due to a lack of spherical symmetry for this 
term, owing to the intermediate coupling conditions in krypton.

As the spin value of Kr63 thus must be considered to be 
established with certainty, it is now possible to calculate the 
nuclear quadrupole moment from the observed intervals. The 
first step in this calculation will be to separate the magnetic and 
the electrostatic contributions to the hyperfine structure by 
evaluating the a- and //-factors by means of the general theory 
on the interaction between nuclei and electrons.12)

According to this theory, the hyperfine structure of a given 
level can be described by the formula

p , C a. k [3/4 C (C + 1)—/(/+1) J(J+1)
r £» + n'2+°[ 2/(2/—1) J(2J—1)

where
C = F(F+ 1)-./(./+ l)-/(/+ 1).

Eo is the energy of the undisplaced level, i. e. without any hyper­
fine structure, and EF is the energy of the level component 
having the fine structure quantum number F. J is the inner 
quantum number of the level and I the nuclear spin, a and b 
are the magnetic and electric interval factors, respectively.

The evaluation of the a- and //-factors is simply carried out 
by the following scheme (table 5), in which the values of EF 
are calculated for / = 9/2 for the two cases J = 1 and J = 2. 
By subtracting adjacent term components EF the term intervals 
A E, given in the last column, are found. It will be seen from 
the expressions A E, that the Lande interval rule comes out, 
when b = 0, i. e. if no quadrupole moment is present.

By inserting the observed intervals from table 4 in the ex­
pressions A E one gets the equations, from which the numerical 
values of a and b can be found. For a term with ,/ = 1 (ls2, 
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2p3 and 2p4) one gets just two equations for the determination 
of the two quantities a and b. For 1 s5 with J = 2, however, four 
equations are obtained for the determination of a and b, so in 
this case a graphical method is preferred in order to obtain the 
most probable values. The four equations for 1 s5

I Ta+^h = 60-3
tt 11 4 —II — a — 45. /

HI |a-^6 = 33.2

IV r-ns6 = 23
are plotted in the following diagram (fig. 8) as the straight lines 
I, II, III and IV, which should be expected to intersect in a 
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single point. This is the case within the accuracy of the measure­
ments, as will be seen by the vertical short lines drawn at the 
left. These vertical lines indicate the parallel displacements of 
the four straight lines that correspond to the uncertainties of the

four intervals of ls6. From the centre of intersection one gets 
a = 8.26 and b = 13.

By using the a- and ô-factors, here determined, one can 
calculate the most reliable intervals for ls5; these are given in 
fig. 7 and listed in table 6 together with the final results for the 
other three terms examined. The latter were chosen as making 
the best overall fit with the experimental results.

For the calculation of the quadrupole moment the term ls5

Table 6.

Term J F Intervals a b

1 s2 1
11 9 7

— 139.2, — 107.0 — 24.70 ± 0.06 — 3.7 - 0.4

1S5 2

2 22

13 11 9 7 5
-60.7,--45.4,-33.2,-23.2 — 8.26 ± 0.08 —13 ± 1

2p3 1

2 2 222

119 7
+ 42.0, -F 33.2 + 7.54 ± 0.08 + 0.6 ± 0.5

2p4 1

2 22

11 9 7
— 105.0, — 87.4 — 19.23 ± 0.04 + 0.8 ± 0.3

2 22
9*
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must be preferred. This term has not only the largest 5-factor, 
but further, quite analogous to xenon,7> the calculation for this 
term can be carried out independently of the type of coupling. 
According to the theory for the quadrupole interaction, the 
quadrupole moment Q can be found by the expression

- Q • (3 cos2 0—1) • • 7.89 • IO-3 = b • 10~24
\rj

where (3 cos2 0 — 1) is a measure for the deviation from spheri­
cal symmetry of the charge density of the electrons for the elec­
tronic state in question and for 1 s5 will have the value ±2/5. 
The quantity j , where a0 is the radius of the first hydrogen 

orbit and r the distance of the electron from the centre of the 
nucleus, can be calculated by the following expression

Q-°V= 0.114 • A ■ -
r J Zi-H

where A is the doublet separation of the ground state of the ion, 
Zf the effective nuclear charge, and 7?' and H are relativistic 
correction factors. With the following numerical values A — 
5220 cm-1, Zj = 36 — 4 = 32, H = 1.03 and R' — 1.045 one 
obtains j = 18.9.

By inserting these quantities in the expression for Q one gets

Q = +(0.22 ±0.02) X 10-24cm2.

The term ls2, used by Korsciiing3), is not as well suited as 
1 s5 for the calculation of (). A comparison between the 5-factors 
of these two terms may, however, be carried out by a consider­
ation quite similar to that used in the case of xenon.7)

For 1 s2 the wave function can be written in the form
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where the coefficients cx and c2 can be determined from the mul­
tiplet structure (i. e. from the relative positions of l.s2, ls3, 1 s4 
and ls5) as well as from the Zeeman effect. Both determinations 
yield Cj = 0.156 and c2 — — 0.988. The 5-factor of 1 s2 can then 
be calculated from the Z?-factor of the ion (P3/2) by the formula

6 (ls2) = 1- 6 (Ps/2) e2j

where R' — 1.045, S = 1.07, and b (P3/2) — b (ls5) — (13 ± 1) X 
10—3 cm-1. One then gets

5(1s2) = -Z?(ls5)(c? — 2.89 • CjC2) = (3.1 ± 0.3) x 10~3 cm”1

to be compared with the observed value (3.7 ± 0.4) X 1 0~3 cm-1.
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he principle of specific interaction of ions was formulated by
I Brönsted1) in 1921 two years before the publication of the 

theory of Debye and Hückel2) in 1923. These two theories were 
later combined into a single formulation by Guggenheim3). The 
mathematical aspect of this formulation has recently been 
analysed and criticized by Scatchard4). The present article 
is inspired by Scatchard’s analysis. Starting from different 
premises I reach conclusions the most important of which con­
firm Scatchard’s. Il is more difficult to say whether we are in 
complete agreement because Scatciiard’s article is unfortunately 
so condensed that clarity has been sacrificed to brevity. In 
particular some of the symbols used by Scatchard are inade­
quately defined and I have been unable to interpret them. I shall 
return later to a discussion of Scatchard’s analysis.

Consider a solution containing nw moles of the solvent water 
and nt moles of the ionic species i. The Gibbs function G can 
be expressed in the form

G = nw/jow + ^ini^ — RTXî[ni — niln— | + Gcorr + Gel + Gs (1)

where denotes the chemical potential of pure water and 
is at the given temperature a constant characteristic of the ionic 
species i at infinite dilution in water. The terms RT Xi are an 
approximate form for an ideal dilute solution and Gcorr denotes 
terms, unimportant at high dilution, to correct for the previous 
terms being only approximate. Gel denotes the contribution due 
to electrostatic interactions between the ions regarded as rigid 
charged spheres with a common diameter. The form of Gel is 
given by the theory of Debye and Hückel2), modified if neces-

1*  
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sary according to the treatment of GronwaliA The term Gs 
represents the remaining contribution due to short range inter­
actions. This article is concerned with Gs, but not with Gcorr nor 
with GeZ.

The osmotic coefficient 99 is defined by

— !' w = 9? T ( 2 )
"w

where //w denotes the chemical potential of water in the solution 
and the chemical potential of pure water. The activity coef­
ficient yt of the ionic species i is defined by

= HTInniyi (3)

where pt denotes the chemical potential of the ionic species 
It is scarcely necessary to mention that quantities such as /n 
and yt are physically significant only when combined to relate 
to salts or other combinations with zero net charge6). For the 
sake of tidiness we have used mole ratios nt/nw instead of the 
more usual molalities nq. If we were to replace iii/nw by nn in 
formula (3) the value of pf1 would be changed by a constant 
term, but the value of the activity coefficient yi would be un­
affected.

From comparison of (1) with (2) and (3) it is evident that 
when Gcorr, Gel and Gs vanish, 99 and all y/s become unity. Il 
is further clear that 1—99 and In yi can be decomposed linearly 
in the same manner as G, namely

1 — 99 = 1 — (pel  ycorr_ (4)

In yt = Zn y-orr f- In y? + In y*.  (5)

In formula (4) it is implied that <pel is given by the theory of 
Debye and Hiickel and that (pel is comparable with unity, while 
(pcorr and 99s are much smaller quantities. This article is concerned 
only with the terms 99s and In y*.  Incidentally the superscript s 
corresponds to the superscript used by Scatchard.

The essential approximation underlying Guggenheim’s treat­
ment is that Gs should have a form analogous to that for a regular
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mixture of non-electrolytes. For such a mixture of molecular 
species a, ß, ... we have the useful and simple approximation

ß l aß

U aß — Ißa)

where na denotes the number of moles of the species a and 
laj3 is a constant characteristic of the pair aß. For the solution of 
ionic species i, k, ... in water iu we write correspondingly

9
2 iHw Lww 

ilw 4~ "i
+ Hw Xi lit Iwi

Ilw 4" Xi Hi
1 27 j Xk Hi Hk lik
2 II w 4“ Xi II i

(7)

We now expand in powers of m/iiw and neglect terms of second 
and higher order, obtaining

Xi m Xk Ilk Iwk .
4~ ■‘-'i Hi Iwi — -------------- 4~ • • •

1 Xi Xk Ili ilk lik
2 ilw

(«)

Differentiating with respect to nw and denoting the mole ratio 
iii/iiw by i’i, we obtain for the corresponding term /nsw of /.iw

flw — — (Xi I’i)2 Iww Xi l'i Xk I'k Iwk — — Xi Xk Vi I'k lik (0 )

and consequently

- = £ lww _ 2\ yt Iwi + 1 2\ Ek yi yk lik 
Xi n 2 2

(ID)

where
i ii i y’ i

(H)• / 2, - LA Ad I ty   A. •

Xk I'k Xk Ilk

We can now rewrite (10) in the form

cps RT
Xi Pi

— Xi Xk yt yk L ik (12)
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where La is defined by

La :— ‘ik — iwi — Iwk 4- Iww- (13)

Alternatively we can write

--------— — Li yi yk Mik — Xt (Ji Lii
Xtn 2 2

where Mik is delined by

Mu = 0.
so that

(14)

(15)

(16)

It is important to distinguish sharply Mik occurring in (14) 
and satisfying the identity (16) from Lit occurring in the for­
mally simpler (12) but not satisfying any identity analogous to 
(16). This distinction between Mik and Lik was overlooked by 
Guggenheim, nor is the distinction clearly defined by Scatchard.

Up to this point no distinction has been made between cations 
and anions. We now denote cations by R and anions by X. 
Formula (14) becomes

+ — Xr Xr' yn y r' Mrr' + - Xx Xx' yx yx' Mxx'

(17)

where X+~ denotes summation over pairs of ions of opposite 
sign, and y+, y_ are defined by

J/+ = L’+y/j . Xyx so that y+ + y-----U (IB)

We now introduce Brönsted’s principle of specific inter­
action: “In a dilute salt solution of constant total concentration 
ions will be uniformly influenced by ions of their own sign.’’ 
This implies

Mrr' = Mrr — 0 and Mxx' = Mxx = 0 (19)
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so that (17) reduces to

<psRT
Ni

y r y x
Lxx\
2 y+ /

We can rewrite (20) formally as

(psRT
Nt ri

yiï yx Nrx

where Nrx is defined by

(20)

(21)

(22)

but Nrx is not independent of the composition of the solution.
If all the cations have the same charge and all the anions 

have the same charge, so that every electrolyte present consists 
of the same number v+ of cations and the same number v- of 
anions, then

v-
y+ = . y- = , (23)

v+ + v+~r V-

and Nrx becomes a constant characteristic of the electrolyte 
composed of the ions R and X. When electrolytes of more than 
one electrical type are present, Nrx varies with the relative 
proportions of electrolytes of the several types. Nrx is then not 
a constant. This is the important conclusion reached by Scat­
chard, but expressed rather differently.

So much for the osmotic coefficient. We shall now derive 
analogous relations for the activity coefficients. By differentiation 
of (8) with respect to nt we obtain, using the definitions (11), 
(13) and (15),

, « N/c nk (Iww — Iwk — Iwi + lik) v-> ,
In Yi =--------------------------------------- = ^k yk Lik

Nk yk

(24)
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When wc introduce the notation /?, R' for cations and X, X' for 
anions formula (24) becomes

III ?r — Xx'yx'\MRX' I ~ Lx'X' + Lrr]

+ Xr' Ur' (-Lr' it' + Lrrj (25)

— Xx'yx' \Mrx' + - Lx'x'j T Xr'ijr' Lr'r' + - Lrr

where we have used the principle of specific interaction in the 
form

Mrr' — Mr'r' 0. (26)

We now consider an electrolyte composed of vr ions R and vx 
ions X and we define

qR
Vr

vr + vx
7 A'

vx
VR + Vx

(27)

From (26) and the analogous formula for yx we deduce for the 
mean activity coefficient of the electrolyte

In yR,x — Xx'ijx' I qR Mrx' + - Lx' x'
1 qR Lrr

y-

I y/î'I 7X dfft'x
(‘28)

If, but only if, all (he electrolytes present are of the same 
electrical type so that

y I = 7« y - = 7 A' (29)

formula (28) reduces to

/n y\i,x = qR Xx' yx' Xrx' + 7x Xr'y r' Nr'x (30)

where each Nrx is independent of the composition and is given 
by

,r , f Lxx . LrrNrx = Mrx +----+------- • (31)
2 7/j 2 7Z

This conclusion is also in agreement with Scatchard’s.
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If we want to obtain formulae of comparable simplicity in 
mixtures of electrolytes of several types, we have to supplement 
the principle of specific interaction

Mrr' — Mrr 0 Mu' = Vw — 0 (W

by the additional assumptions

I'RR = I'R'R' = Lxx = Lx'x' = L. (33)

Formula (20) then reduces to

In ySR,x — (IR Nx'yx'MRx' + yx Nr' y r'Mr'x + G. (34)

This may be rewritten in the form

ysn,x = <ir NX' yx'' Nrx' + yx Nr' y r' Nr' X (35)

where Nrx', Nr'x defined by

Nrx' — „ I'Mrx' +
(1r

(36)

Nr'x = Mr _y + —
yx

(37)

respectively depend on the electrical type of the electrolyte whose 
activity coefficient is being considered, but not on the electrical 
type of the other electrolytes present. It seems that Guggenheim’s 
previous treatment of mixtures of electrolytes of different electri­
cal types involved the tacit assumption expressed by (33). 1 can 
see no convincing physical basis for this assumption except as 
an approximation on the grounds that Lrr and Lxx are likely 
to be much less specific than Mrx-

I now return to an examination of Scatciiard’s analysis. 
Scatchard begins his discussion with his formula (10)

Ni Ci bi 1 Nij Ci Cj bij
C 2 C2

(S 10)

where a denotes the equivalent concentration of species i and 
c the total equivalent concentration. I am not at all clear why 
this formula contains equivalent concentrations rather than ionic 
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concentrations; nor am I sure whether Scatchard attaches im­
portance to the distinction. The situation is complicated by his 
quoting as the relation between equivalent concentrations a and 
molalities nu

vc = Xi Ci vi — Xi nu

Since neither v nor Vi is delined, I cannot say with certainty that 
this formula is wrong, but it does look strange. However, I shall 
assume that these matters are trivial and return to the discussion 
of formula (S10). Scatchard attaches special importance to the 
presence of the terms in bi and states that “Guggenheim avoids 
the thermodynamic error by the usually improbable assumption 
that every bi is zero’’. Now we can always define quantities 

l>y

'bj + K l’j

and then, since Xia = 2c rewrite (S10) as

o   1 ci Ci ^ij
4 1 22 c

The question whether the bi are zero or not is consequently 
meaningless until the by have been unambiguously defined and 
Scatchard has omitted to do this. Presumably Scatchard’s bij 
correspond closely to my Afy and not to my Ly. To sum up, 
Scatciiard’s premises are ambiguous but my premises lead to 
conclusions in considerable, if not complete, agreement with his.
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I. Introduction.

otational spectra have been well established as an important
1 1 feature of the excited states in heavy nuclei, The theory of 
rotational stales and the supporting evidence have been given by 
Bohr, Mottelson, and co-workers (cf. Bohr, 1952; Bohr and 
Mottelson, 1953; Bohr, 1954; Bohr and Mottelson, 1954; 
Bohr, Fröman, and Mottelson, 1955; Alaga, Alder, Bohr, 
and Mottelson, 1954).

Deviations from the simple rotational spectrum have been 
found for the most part to be small and to often exhibit the charac­
ter of rotation-vibration corrections, especially in even-even 
nuclei (Bohr, 1954). As is well known, such corrections arise as 
an effect of the centrifugal force on tin*  intrinsic structure of the 
rotating system. The fact that the observed deviations are usually 
small implies that the centrifugal force excites only high energy 
modes of the intrinsic structure. By high energy we mean large 
compared to the characteristic rotational energy.

An examination of the rotational spectra in Wolfram 1 <33 
reveals a deviation from the simple structure, which cannot be 
accounted for by the rotation-vibration correction. It is proposed 
that this deviation is caused by the action of the rotation in ex­
citing low energy states of the particle structure. When suitable 
low energy states exist, the rotational motion is no longer separable 
and we must treat it as strongly coupled to the degrees of freedom 
in question. This effect is well known in molecules, where it has 
been called the Rotational Perturbation (cf., e.g., Herzberg, 1950, 
pp. 285-6).

The analogy to molecules, although of great use, must not 
be carried too far when it comes to detailed discussions. For 
example, in molecules the heavy particles provide a rather stable 
field in which the electrons can move; while in the nucleus it is

1*  
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the nucleons which must provide, in a self-consistent way, the 
field in which they themselves move. Also, the mass of a nucleon 
compared to the nucleus is much larger than is the case for 
electrons in molecules. One may therefore expect that most 
perturbations will play a more important role in nuclei than they 
do in molecules.

We can also expect that the rotational perturbations in par­
ticular will be less important in even-even nuclei than in odd 
nuclei, al least near the ground state, 'flic reason for this is the 
fact that, in even-even nuclei, the first excitation of the particle 
structure appears to be rather high (~ 1 MeV), probably because 
of the interaction between pairs of nucleons. Thus, there are no 
very low energy states which (“an be coupled to the rotation.

In the following sections, the consequences of the rotational 
perturbations are developed, using a simplified model at the 
start in order to keep the essential points foremost. Then, a rather 
detailed application is made to the accurately measured energy 
spectrum of Wolfram 183 (cf. Murray et. al., 1955). From this 
we obtain good evidence that the interpretation is well founded. 
A similar analysis of other odd nuclei will be of interest, but this 
must await the accumulation of more data.

II. Rotational Perturbations.

In order to make clear the origin and generality of the particu­
lar rotational perturbation in which we are most interested here, 
it is useful to consider a simple model. Subsequently, we shall 
generalize this model in order to make it applicable to the actual 
case of nuclei. In doing so, the role of other rotational perturba­
tions will become clear.

Therefore, we first restrict ourselves to the system of a single

where p, j, and f are respectively the linear momentum, angular 
momentum, and position vectors of the particle in the system of 

particle coupled to a rigid top by a 
for this system is simply

potential. The Hamiltonian

II = - + V(r) +
3

V' zr
Q o \*k À)2, (H.l)

2 tn
* = 1

2 A*
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coordinates corresponding to the instantaneous position of the 
principal axes of the top. The vector I is the total angular mo­
mentum of the system; 3*  are the principal moments of inertia of 
the top; V is the potential energy between the particle and the 
top; and m is the reduced mass of the system.

For the analogy with nuclei it is useful to consider first the 
case where both the top and the potential V have axial symmetry. 
In particular this means

31 = 32 = 3. (II.2)
The Hamiltonian (1) can then be written in the more convenient 
form

H = H0+~‘ (/3-J3)2 + ^(P-/5-j28)+ /i«;, (II.3)
2 O3 2 3

with

+ V(?) + (II.4)
and

A2

where

= - — (I+j^ + I_J+), (II.5)

I± = h ± Ü2, j± = ji ± ij2. (11.6)

The term defined in equation (5) is an effect of the Coriolis 
force on the particle and will be given the name “rotation­
particle coupling’’ (RPC). When RPC is neglected, it is clear be­
cause of the axial symmetry, that I3 and j’3 will be good quantum 
numbers. These have usually been designated by K and Q, 
respectively. The Hamiltonian Ho can, in principle, be solved for 
the particle motion with as one of the quantum numbers (for 
example, see Nilsson, 1955; Gottfried, 1955). Then, the energy 
spectrum will be given by

£ = ß«+X(/<--ß)2 + ^(/(/+l)-A'2-ß2). (II. 7) 
- O3 *0

All available data on rotational spectra in nuclei indicates that 
only states with K = Q occur in the regions of low excitation, i.e. 
the spectrum has the form

~ <\J
(H. 8)
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This is equivalent to the statement that rotations about the 
symmetry axis require high energies, or simply that

$3 «3- (II-9)

The effects of the rotation-particle coupling can be simply 
investigated. For this, we first need the non-vanishing matrix 
elements

(/A I /± I IK ± 1) = |/(f=F A) (Ï±K~+V), (11.10)

O'ßi./T ijö±i) = [/(TrßnTiß+’i). (it.io

Using these matrix elements we note the general property that 
the RPC preserves the quantum number (AT — Q) even though it 
destroys both K and £? separately. This is an important property, 
because it means that matrix elements to the lowest lying states, 
which have K — Q = () in common with the ground state, do not 
vanish.

Whether or not the RPC will be important depends essentially 
on the spectrum of energies for the Hamiltonian Ho. If the spacings 
in this spectrum are large compared to the rotational energies, 
or, in other words, if the rotation is adiabatic with respect to the 
particle motion, then the RPC is a small perturbation and the 
simple rotational spectrum (8) is to be expected. This corresponds 
to a strong coupling of the particle to the rotator. In the opposite 
limit, when the particle is almost decoupled from the rotator, the 
quantum numbers Q and K are not appropriate and the non- 
spherical part of the coupling energy V (r) should be treated as 
the perturbation. We shall be interested in the case of partial de­
coupling. By this is meant the situation where the great mass of 
the particle spectrum is high in energy, but where there may be 
one or a few levels which are low enough so that they cannot be 
simply treated in perturbation theory. The RPC, acting through 
these levels, partly decouples the particle from the rotator. In 
the following section, we shall discuss this case in detail.

An important example of partial decoupling is the case where 
P = 1/2 and the rotator has axial symmetry. Because of this sym­
metry, the states P and — Q are degenerate and the wave function 
is a “symmetrical” combination of the two (cf. Bohr, 1952). 
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Then, for the special case Q = 1/2, the RPC has a diagonal 
matrix element, and this contributes the so-called “decoupling 
term” to the rotational spectrum (Davidson and Feenberg, 1953; 
Bohr and Mottelson, 1953; see also equation (III. 1) below). 
There are many cases of odd nuclei with Q = 1/2 where this 
decoupling effect has been met with.

Up to this point, we have been considering the simple model 
of a particle coupled to an axially symmetric rigid top. We shall 
now proceed to generalize on this model. Our first step is to relax 
the restriction as to axial symmetry. This leads to the following 
four perturbations.

H' = H' + H, + Hg + V'(f) (II. 12)

= («V “ sV) I 2 ^+J+ + + O’+J+ + J-J-
\o x5i o >52/ I

+ (I+ I+ + /-/-) + V'(f),

where V'(r) is the axial asymmetry in the particle potential 
energy, and the moment of inertia 3 in (7) is now the harmonic 
mean of 3i and £52 • All of these perturbations are such that they 
do not preserve the quantum number (/<— Ï2). In view of the 
condition (9), this means that they couple only to high energy 
states. Therefore, in this case, H' can be treated as a small per­
turbation. The analogous perturbations have been previously 
examined by Bohr (1952) for the model of a particle interacting 
with an incompressible liquid drop, in which case an explicit 
expression for Vz(f) is also obtained.

It can easily be seen, using equations (10) and (11) and 
second order perturbation theory, that Hr and H'3 lead to a 
renormalization of 3, while V'(i') and H2 lead to a renormali­
zation of E%. The energy H3 gives in addition a new type of 
term which is negative and proportional to I2 (I + l)2.

It is quite clear, both from general ideas of nuclear dynamics 
and from the data on rotational spectra, that the nuclear rotational 
motion is not that of a rigid body. In fact, the measured moments 
of inertia lie between those for irrotational flow and for a rigid 
body (cf. Bohr and Mottelson, 1955). These moments depend 

)
(11.13)
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on the shape of the nucleus which, in turn, depends upon the 
internal nucleon configuration. However, as long as the moments 
of inertia are essentially constants of the motion, the considera­
tions above will still apply.

Small deviations from the constant values arise from the fact 
that the rotational motion will distort the nuclear shape some­
what. This distortion is essentially a stretching, which increases 
the moment of inertia. Therefore, the moment of inertia can be 
expanded as a function of I (I + 1), and to first order this intro­
duces a term in the energy which is negative and proportional to 
I2 (I + l)2. This is the so-called rotation-vibration energy and its 
magnitude depends on the deformability of the nucleus and on 
the dependence of the moment of inertia on the deformation. 
Other effects of the deformability will arise if the rotation causes 
a deviation from axial symmetry. (The extreme case where the 
nucleus is not stable with respect to vibrations about axial sym­
metry, so-called y-vibrations, has been considered by Bohr and 
Mottelson, 1953, and by Wilets and Jean, 1955.) Then, as 
we have already seen, the energies (13) lead to a renormalization 
of and 3 as well as providing another rotation-vibration-like 
correction. For regions far removed from closed shells, where the 
rotational energies are small (< 100 keV), all the evidence is that 
the rotation-vibration effects are also small. In addition, the 
evidence suggests that, as one approaches closed shells, these 
effects will increase to a point where one would have to treat the 
rotation-vibration coupling in a more exact manner than second 
order perturbation theory. This would be an analogous situation 
to the one considered here for the RPC. For the nuclei near magic 
numbers, where one expects a spherical equilibrium shape, the 
rotation-vibration coupling is so strong that it makes no real 
sense to speak of rotations. The collective motion then takes the 
form of oscillations analogous to the surface vibrations of a 
liquid drop. One has some evidence that this is the case (Gold- 
iiaber and Weneser, 1955).

We must keep in mind the fact that in nuclei the moments 
of inertia arise as a collective effect of all the particles. Actually, 
the inertia of the rotational motion is intimately associated with 
the RPC', and in fact the moment of inertia can be traced back to 
a second order effect of the RPC on all the particles (cf. below).
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The decoupling effects which we consider here arise in cases where 
higher order terms are important so that it is necessary to de­
scribe more explicitly the corresponding degrees of freedom. 
Essentially, this is the case when there exist low lying states of 
excitation of the particle structure, or special degeneracies, as 
in the case of 12 = 1/2 with axial symmetry. Such low lying excita­
tions, with energies comparable to rotational energies, are usually 
found in odd-A nuclei and we therefore expect decoupling effects 
to be especially important in these cases.

Finally, it is emphasized that the RPC, which we consider 
acting between low lying configurations of the rotating nucleus, 
is of a very general nature (Coriolis force) and its existence is 
independent of any specific assumptions about the intrinsic 
nuclear structure.

III. Mixing of Two Rotational Bands.

Let us consider the simplest possible case where the RPC 
will have an important effect. This is the situation when there is a 
single low-lying configuration which is coupled to the ground 
state by the RPC. In this case, the energy can be simply diagonal­
ized (cf., e.g., Herzberg, 1950, p. 283) and the various limits 
considered afterwards. Without the RPC there is associated with 
each of the configurations a rotational band having energies*

where the parameter E^ and the decoupling parameter a 
depend in some way upon the nucleon configuration, and where 
E^ is conventionally chosen so that Ek(K) will have the ex­
perimental energy.

fhe rotational spectra corresponding to the close configura­
tions K and K + 1 will be mixed by the RPC (only states with

* For reasons of simplicity, we have disregarded the rotation-vibration term
- Eg) p ( / + 1) + « (-1/ + Z + 1 (a)

although there is no difficulty in including it if the accuracy of the data requires 
this. 
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the same I can mix) and the resulting energy spectrum will be 
given by*

* In general there is also the possibility for the RCP to connect different 
states of the same parity both of which have K — 1/2. This arises on account of 
the symmetrization of the wave function discussed before. The considerations are 
the same as those presented here and the only difference is that we put K = — 1/t 
in the matrix element Ak-

E(7) = V2 {£k + i (O + £X(O} I
  (III.2) 

± 72 Ek -1 (/) - Ek (/ ) + 4 (/ - A') (/ + Æ + 1 ) I

where
1 h2 \

Ak = — J-
23

A 4- 1 j (HI.3)

J- = Xi- ■
particles

(3) a

We note that the state I — K is not affected because it has no per­
turbing partner in the (A 4-1) spectrum. It is clear that the para­
meter Ak has roughly the order of magnitude of a rotational 
energy, although it may be considerably smaller if the two con­
figurations have a small overlap.

The amplitudes of mixing will be expressed in the following 
notation. We write the wave functions as

= + Z>"-i¥';K + 1, (111.4)

= 1 , (III. 5)

where the superscripts H and L denote the higher and lower 
energy solutions, respectively, and the dependence on other 
quantum numbers is left implicit. In terms of the ratio

I'(/-/<)(/ + /< 4-1)
(III.6)

the mixing amplitudes are

= {1 + [± I 1 + A2]’} (III.7a)

(III.7b)



Nr. 15 11

We have conventionally considered the particle state K + 1 to 
be higher than the state K. For the opposite case we have only to 
interchange the roles of cij and bi in (7).

One is interested in the electromagnetic transition probabilities 
between the mixed states. These will be given in terms of the 
above mixing amplitudes and the usual y-rav transition matrix 
elements. The latter are expressed in general by the formulae 
(cf. Nilsson, 1955)

A ( A 2 ) = — e2 ( ( I 2 I'K' I IK 2 , A' — A )
16 71

+ bE2 (~ l)r + K’ U % I', — K' I /A 2 , — K' — A')}2 (QKK')2
(III.8)

*(«>) =

+ bMKi (- 1 )I +K' (HA,- A" I IK 1 , - A' - A)}2 (GKK )2, 
(III.9)

where Q, G, b^i, bß2 depend upon the intrinsic wave functions. 
For the diagonal transitions (diagonal in A), these have the 
usual interpretation in terms of electric quadrupole moments and 
magnetic «/-factors.
Thus

Qkk = qK, (III. 10)

the electric quadrupole moment in the state A'; and 

= A (gK — (Jr), (III.11)

related to the magnetic «/-factors in the state A (cf. Bonn and Mot- 
telson, 1953, p. 109).

In quadrupole transitions, the off-diagonal matrix elements 
and the quantities bß2 can usually be neglected because they are 
single-particle effects, while the diagonal matrix elements are 
essentially the large collective electric quadrupole moments. For 
magnetic transitions the term containing Ijmi enters only in the 
diagonal case A — K' = 1/2. The factor which determines the 
effect of bMi is the ratio (see (14))
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/77' = (Zi i'.—'lz
\nr x/2

Z72i,-i)
Zx/2 1 0)

(-i)z+1/i
i , r -i—i 

(2Z+1), r = /

i , r = i+1.

(III.12)

The reduced transition probabilities between the mixed states 
(neglecting the single-particle E2 effects) are then

B (E2) = -1 <'2 { a,arQ^ (12 I'K | IK 2 0)
1 o %

; bIbI'(j£' C1 2 7'7<' I IK' 2 °) )2
(III. 13)

with

11 (.VI ) = y |c” ] ! «/nrGKK (/ 1 I'K I IK 1 0) 

[’ + ôk.‘I, /" '’mi] + b,brGK'K'(I 1 I'K' I IK' 1 0)
+ ajbr(;KK'(J 1 I'K' \ IK 11)

+ ur/?/;K'K (/ 1 I'K I IK' 1 , — 1 ) }2

(III.14)

K' = /<+!; GKK' = -GKK. (III. 14a)

The transition probabilities are given in the usual way by 

r<£2) = lil(cs(£2) (III15)

nun (in. 16)

We can easily examine the extreme case where the interacting 
particle states are almost degenerate. If, for example, we take 
/< # i/2j /ræ = E^+1, and assume that the rotational family is 
degenerate in zero order, the energy spectrum is 

£(/) = E^ + l^'\l<l+l)±(^[(I-K)(I + K+1^, (111.17) 
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while the mixing is fifty fifty, i. e.

One sees, therefore, that the decoupling can have a rather 
large effect on the rotational spectrum, enough in some cases to 
make it almost unrecognizable as such (cf. also the decoupling 
effect when K — 1I2. It is not expected that this extreme case will 
occur, except by some accident, but nevertheless it is instructive 
as an example of the kind of effect which can occur. It is more 
instructive to examine the opposite extreme where perturbation 
theory is useful, and this is done in the next section.

IV. Perturbation Limit for RPC.

When the energies of the two configurations (Æ and K + 1) are 
very different, i.e. the difference is large compared to the rota­
tional energies, we expect that the mixing can be treated as a per­
turbation. The different orders of the perturbation series are 
simply obtained by an expansion of the equations in Section III. 
The relevant expansion parameter is the ratio It is clear
that whether or not perturbation theory is applicable depends to 
some extent on the total angular momentum I in view of the I 
dependence of Rk- In general, the perturbation series becomes 
less useful, the larger I is.

For the energies in the perturbed ground state band, one 
obtains the formula*

(IV. 1)

* The result (1) is for the case where there is only one state (K ± 1) which 
interacts with the ground state K. Of course, the perturbation result can just 
as easily be obtained for the more general case where there are an arbitrary number 
of interacting states. In higher orders, we would then have to include states with 
K ± 2, etc., and this might change the results in specific cases. Equation (1) is 
displayed in order to show the kind of effects which may be expected.
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where K labels the ground state band, and K' the interacting 
band (K' = A i 1). The quantity àE is the energy difference, 
taken as positive, between the interacting configurations. The 
necessary condition for this expansion is

>«'• <IV-2>
There are two general remarks which can be made on con­

sideration of this result. First, the RPC can significantly increase 
the moment of inertia for the ground state rotational band; and 
second, it can provide a vibration-rotation-like term which has 
a positive sign. We shall look first at the former effect.

In second order perturbation theory, one sees that the moment 
of inertia is increased by the factor (cf. equation (1))

ami, hence, when there are appropriate low-lying configurations, 
the last few nucleons can have a rather large effect on the moment 
of inertia, even when perturbation theory is still valid. For ex­
ample, in a nucleus with A 200, each particle can be said to 
contribute on the average one half of one percent of the moment 
of inertia, while the last few nucleons might easily give rise to a 
contribution of ten per cent. Of course, if the contribution is too 
large, perturbation theory will not be adequate, especially for 
the higher states in the band. The empirical evidence shows a 
general tendency for larger moments in the odd nuclei than in 
neighbouring even nuclei (cf. Bonn and Mottelson, 1955; 
Bohr, Fröman, and Mottelson, 1955). This would indicate that 
the last few nucleons do indeed have low-lying states, and that 
the RPC is operating as described above. In many cases, the 
difference is so large as to indicate that a perturbation treatment 
of the RPC is not suitable. In the next section we will discuss the 
case of 74W183 where this situation exists.

One can recall the remark made earlier that we expect the 
RPC to be rather intimately connected with the moment of inertia. 
In fact, Inglis (1954) and Bohr and Mottelson (1955) have 
shown that the total moment of inertia can be derived in time­
dependent perturbation theory as an effect of the rotation on the 
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particle structure; an effect cpiite equivalent to the RPC when 
one takes into account all of the particles and uses second order 
perturbation theory.

It is not surprising to see that the second term in (1) is propor­
tional to Z2(Z + l)2. The interesting fact is that the coefficient can 
in principle have a positive sign. For the particular case we have 
studied here, the positive sign is obtained as long as the moment 
of inertia of the interacting band (/<') is not too large compared to 
that of the band (/<) under consideration. As has been discussed 
above, this type of term in the energy can arise as a direct effect of 
the centrifugal force on the moment of inertia (rotation-vibration 
interaction) or as an effect of the energy H3 (eq. (11.12)) in second 
order perturbation theory. In both cases the coefficient is negative. 
The reason one can have a positive sign from the RPC is that 
the /2(/+ l)2 term first arises in fourth order perturbation 
theory. (The same is true for the less important perturbation Hi). 
Since the RPC can usually couple to states of lower energy it 
may be rather more important than the other couplings, even 
in fourth order. Thus we may expect in some cases to find an 
anomalously small or even a positive “rotation-vibration”-like 
correction.

We seem to have an example of both of these effects (renormal­
ization of moment of inertia and positive rotation-vibration cor­
rection) in the excited rotational band of 74IV182 which has been 
assigned as odd parity and K = 2 (cf., e.g., Alaga et ak, 1955). 
At this excitation energy (1.29 MeV for the first state of the band) 
one expects that the level density is higher than in the ground 
state region, and then the RPC may play a role, as it does in the 
neighbouring odd isotope. This seems to be the case because the 
excited band has a higher moment of inertia than the ground 
state band (15°/0 higher); and also it has a positive rotation- 
vibration-like correction, while that of the ground state band is, 
as usual, negative.

In the perturbation limit, the effect of the rotational admix­
tures on the electromagnetic transition amplitudes can be easily 
obtained. To first order in (Ak.JAE), the mixing amplitudes are*  

* This is for the case where the configuration K + 1 is higher in energy than 
the configuration K. For the reverse case the roles of aj and bj are interchanged 
(cf. Ill equation (7)).
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af = h/~l; <,« = -&f'~^)pZ-Å')(/ + Æ+l). (IV.4)

Let us first consider transitions between rotational states in 
the same band. The following results are obtained, using equations 
(4), (111.13), and (III. 14) along with certain properties of the 
vector addition coefficients. For E2 transitions (T = I — 2) and 
J/l transitions (T = I— 1) within a band (Æ), we have respect­
ively

B (E2) = e2(/2 I' K | I K 2 0)216 n

4 71
(IV. 6)

where K' = Æ ± 1 labels the perturbing band. The values of fKK 
are given in Table 1.

Table I.

tKK’
'M 1

fKK' 
' E2 K'

~(K + 1) ~(2K + 3) K + 1) A is ground state band
(A —1) (2 K — 3) A — 1

(A + 1) (2 A + 3) A + 1 A is excited band
— (A —1) — (2 A — 3) A —1

One sees from (5) and (6) that, when the rotational admix­
tures are small, they do nothing more than “renormalize” what 
are understood as the electric quadrupole moments and the 
magnetic g-factors. The I dependence of the transition amplitudes 
remains the same as they are without the admixtures. The renor­
malization of Qo will be quite unimportant because the correction 
term, in addition to being small because of (Ak</z1 Zy), is made 
smaller still because the off-diagonal matrix elements QKK are 
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expected to be unimportant compared to the intrinsic quadrupole 
moments Qq .

For transitions between mixed rotational bands, in the usual 
case where the quadrupole moments of the two bands are nearly 
equal, we get simply

when

B(E2) = -4 e2 (/2 I7<' |/Æ 2, Æ'— Æ)2
16 %

(IV. 7)

Of = Qo > K' = Æ ± 1 ; # x/2.

This is a result previously derived and used by Alaga et al. 
(1955). One can obtain a similar result in the M1 amplitudes, but 
the necessary condition GKK — GK K is not likely to be fulfilled. 
In equation (7) one sees that the off-diagonal particle term can be 
important because the strong collective term is cut down by the 
small factor (Ak</^B).

V. Application to 74IF183.

The energy levels in the odd nucleus 74IV183 have been very 
accurately determined up to an energy of 450 keV from a study 
of the y-transitions and internal conversion following the ß-decay 
of 73T«183 (Murray et al, 1955). The level scheme suggested by 
Murray et al. can be interpreted in terms of two intermixed 
rotational bands accompanying configurations with K = x/2 and 
K = 3/2* (cf. Fig. 1).

* This interpretation has also been considered by Christy (1954).
Dan.Mat.Fys.Medd. 30, no. 15. 2

A semi-empirical fit of the ground state rotational band, 
(/< = i/g), using the usual formula (III.1) with the correction III. 
(la), is successful in a qualitative way,. and leads to the para­
meters EÎP = 13.027 keV, a = 0.1904, and K(,2) = 0.003182 keV. 
The energy of the K= x/2, I = 9/2 level (6) using these para­
meters is only some 8 keV lower than the experimental value.
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7?

[477 3]11/2
4 53.08

[412.06]H 41208 K = 7/? -

K = 1/2 -
V/183

74W

(7/2)

G 9/2 -------------------- 308.94 [308.73]
F V2 --------------------  291.71 [291 85]

D 7/2 -------------------- 207.00 [207.10] E V2 --------------------- 208.81 [208.69]

K = 3/? -

C 5/2 ---------- ---------- 99.07 [99.29]

B 3/2 -------------------- 46.48 [46.31]

A 1/2 -------------------- 0

Fig. 1. The level scheme in W183 suggested by Murray et al. has been drawn 
so as to display clearly the interpretation in terms of rotational bands. The dif­
ferent bands are horizontally displaced, and the numbers in square brackets are 
the energies calculated using the parameters (V. 1).

Since it does not fit in with the other rotational sequences we postulate that 
the level I (spin 7/2) begins a new rotational band with K — 7/2. Because the 
RPC cannot directly mix bands with zl K > 1, the K = 7/2 band cannot mix 
with K = 1/2 or 3/2 bands. Therefore the level I can be disregarded in dealing 
with the mixing of the other two bands.

The spin for the state H has been postulated to be 7/2 rather than 5/2 as 
suggested by Murray et al. This seems to be a reasonable assignment because 
of the lack of an £2 transition to the ground state. The spin 7/2, however, is con­
trary to the multipolarity assignment M 1 for the transition HE. This assignment 
is based on internal conversion evidence (measurement of the K conversion coef­
ficient), but appears not to be entirely conclusive. In addition, the theory predicts 
a 7/2 state with just the properties of the observed level H. A conclusive measure­
ment of this spin would of course be very interesting.

This discrepancy, however, is something one would like to 
understand. In view of (1) the fact that there is a close lying 
K = 3/2 configuration, and (2) that the parameter E^ (13.027 
kev) is 22 °/0 less than the value of E^ (16.767 keV) in the neigh­
bouring even-even nucleus 74W182, it would seem likely that the 
8 keV discrepancy is a result of the EPC. Then, using the first 
part of equation (IV. 1), we can simply estimate that = 28 
keV. This only serves as a first estimate, because the 8 keV dis- 
crepancey implies that a fourth order perturbation treatment is 
not valid. The large effect on the moment of inertia implies the 
same thing.

The formula (III. 2) has been applied to the first five levels 
above the ground state, and the resulting parameters are
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E$P — 15.853 keV. a = 0.1684 keV. 
/2

= 14.050 keV. A, = 21.735 keV. 
/2 /2

E<o) = 146.74 keV.
(V.l)

The numbers in square brackets in Fig. 1 give the energies 
as calculated, using these parameters. We note that the discrepancy 
has been reduced to the order of one fifth of a kilovolt. This 
remainder might easily be caused by the neglect of other rotation- 
vibration-like terms in the energy. Just as important, the value of 

is now much closer to the analogous quantity in the neigh­
bouring even-even nucleus. Again, the remaining discrepancy 
might easily be a result of other higher order effects. Finally, it is 
interesting to note that the matrix element Ai/ has the expected 
order of magnitude of a rotational energy, which we had already 
seen in the perturbation estimate above.

Making use of the parameters (1) along with equations (III. 1), 
(III.6), and (III. 7), a table of mixing amplitudes can be simply 
constructed.

Table II.

I 3/12 5/2 7/2 9/2

.24 .35 .47 .51

.97 .94 .88 .86

Now m is the amplitude of K = 1/2, bi is the amplitude of 
K — 3/2, and H, L refer to the high and low energy states of the 
same total angular momentum I. Especially for the higher angular 
momenta, the mixing is considerable, and one does not expect 
that perburbation theory would be adequate.

Having determined the mixing amplitudes we can now go on 
to an examination of the electromagnetic transition probabilities. 
One has a great wealth of data on relative decay probabilities 
(cf. Murray et al., 1955) and also some data on Coulomb ex­
citation (Huus et al., 1955; McClelland et al., 1954; Mark et 
al., 1955; Stelson and McGowan, 1955). Although this data is 

2*  
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quite extensive and accurate it would be very useful to have 
even more detailed measurements; for example the E2/M1 mix­
tures would be quite interesting and also decisive for the inter­
pretations which follow.

The easiest transitions to discuss are those which are pure 
E2. This is so because here the parameters are roughly known. 
First, it is not expected that the collective quadrupole moment 
will vary drastically from one state to another, i.e., we expect 
Qq2 and Qq2 to be roughly equal. The fact that the moments of 
inertia for these two states are closely equal can be considered 
as evidence for this. Hence, we can take

To the same approximation we can also use

Q3/?/2 ~ Q

because this is a single particle effect.
Murray et al. have measured only one intensity ratio for a 

pair of E2 transitions. This is the ratio for the transitions HE and 
HB in AV183 (see Fig. 1) which they find to have the value 0.27. 
A direct calculation, using (2), gives 0.34, which agrees within 
the accuracy of the measurements. Without the rotational admix­
ture this ratio is too small by a factor ten even for a more 
favourable choice of Q'a .

Making use of the same assumptions (2) we can construct a 
table of relative Coulomb excitation probabilities. Thus, fixing 
()o ~ 0-5 • 10”24 cm2 to fit the value given by of Huus el al., 
(1955), we can calculate the other excitation probabilities. 
The value of Bexc (E2) for the highest stale is roughly one- 
sixth of the values for the two low states. Without the rotational 
admixture this would be reduced by more than a factor ten. 
Recently the excitation AF has indeed been observed (cf. Stelson 
and McGowan, 1955) and the value of Bexc(E2) determined 
agrees with the value given in the table, indicating that the estimate 
(2) is roughly correct. Since the value for ()o is consistent with 
values in the neighbouring nuclei (cf. Huus et al., 1955) the inter­
pretation seems well confirmed.



Nr. 15 21

Table 111.

Transition ...................... AB AC AE A F

Energy (keV.)............... 46.5 99.1 208.8 291.7

I B 1/2^3/2l 1/2->5/2L 1/2->3/2h 1/2 -> 5/2"

/yexe(E,2)e-2.1048cm-4 1.6 2.2 0.099 0.30

The above estimates show that the rotational admixtures play 
an essential role for certain transitions. In a more quantitative 
discussion one should consider the quantities ()q , Q1/2’\ and 

as parameters to be fitted by the data. The accuracy of the 
present experiments is not sufficient to determine these para­
meters although it indicates that the choice (2) is a good one.

There is much more data available with respect to the M\ 
transition intensities. Murray et al. have measured twelve in­
tensity ratios in IV183 which can serve as a good test of the theory. 
Because IT183 has a ground state spin I — 1/2 we see from (III. 14) 
that there are four parameters, leaving eight pieces of data which 
the theory must fit. The M 1 amplitudes are linear expressions in 
the four derived parameters a, ß, (ja, 713.

(V.3)

(V.l)

(V.5)

(V.6)

Note that the new parameters are defined in units of the ground 
state quadrupole moment Qq. Since we are dealing with in­
tensity ratios, we are led to a set of twelve quadratic equations in 
four unknows. We have proceeded by a trial and error method, 
and have succeeded in finding values for the parameters which
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Fable IV.

Transition ^exp hheo °/0 E 2 (theo) Relative
E2/M2 phases

BA..................................... — 110 .6 (±)
CA..................................... (28) 28 100
CB..................................... 30 20 3 (±)
DB..................................... (400) 100 100
DC..................................... 900 1 100 1 (±)
BA..................................... 220 370 20 (±)
EB..................................... 1400 ' 830 10 ( ~F)
EC..................................... (144) 144 5 (T)
FA..................................... 1330 840 100
FB..................................... 460 9 (±)
FC..................................... 60 87 70 (T)
FI)..................................... (300) 300 .8 (T)
FE..................................... 47 82 20 (T)
GC..................................... (1790) 1790 100
CD..................................... 65 67 10 (±)
HE ................................... 1860 2500 100
HC..................................... 15900 12000 2 m
HI)................................... (1900) 1900 2 (T)
HE ................................... 490 840 100

50
1

HF ................................... 160 130 (T)
(T)HC,..................................... 110 280

iil Ilie data extremely well considering the uncertainties involved'. 
The fit is presented in Table IV.

Since transition probabilities are a good lest of wave functions, 
this tit is considered as evidence that the general ideas employed 
are correct. It would be very interesting to have more measure­
ments, particularly on the E2/ÅH mixtures. The theory predicts 
the percentage of E2 in the Ml radiation, and also the relative 
phases. Such measurements would be a further very exacting 
lest of the theory, particularly in the cases where there are rela­
tively large admixtures.

* One of the uncertainties in our wave functions has to do with the possibility 
that the upper (K = 3/2) band is perturbed by a still higher band with the same 
parity and K — 1/2 or ®/2. In fact the high moment of inertia for this band (cf. (1)) 
indicates that this may be the case.
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Caption to Table IV.
We compare here the relative transition probabilities measured by Murray 

et al. to those calculated with the expressions (III. 13) and (III. 14). For con­
venience, we use natural units (ft = c = 1 ; one atomic mass unit = 931 MeV; 
1013cm_1 = 197 MeV; 1024 sec“1 = 658 MeV; e2 = 137“1) and then the para­
meters which give the fit are (in MeV).

a = T 0.037 ß = T- 0.100 g3 = ± 0.042 gl3 = ± 0.006.

The theoretical quantity tabulated is

t = I0»T/{e2(0^)2}

and this has the dimensions (MeV)5 in natural units.
The experimental quantities are relative intensities of y-ray lines from a 

given level. Thus we have normalized the intensities in a given group so that one 
of the experimental values agrees with the corresponding theoretical value for t. 
This intensity is put in brackets in the table. In the last two columns we have 
also included the percentage of £2 radiation and its phase relative to the Ml 
radiation as predicted by the theory with the above parameters. The E2/M1 
phases are not unique because a fit of the intensity ratios determines the M1 
parameters only up to an overall sign relative to the E2 parameters. However, 
once this sign is fixed by a measurement of one of the E2/M1 phases, the rest 
will be determined by the fit. In the table we have given the E2/M1 phases to 
correspond with the signs of the parameters as written above.

The transition EJi was not seen by Murray et al. because it is masked by 
very intense radiation of nearly the same energy, originating in level I (compare 
transitions ID and /£ in Fig. 1). Our calculation shows that this transition (FB) 
is quite comparable in intensity to the others from level F and therefore it should 
be possible to see it, for example, in Coulomb excitation, where the level I is not 
excited. Actually the relative intensity FB must be included in an accurate estimate 
of B (E2) for the level F when this is measured by Coulomb excitation (the value 
for Eexc(E2) by Stelson and McGowan, is calculated by neglecting FB).

It is probably possible to improve the fit by a more exhaustive analysis using 
four parameters as above, or by including as parameters the E2 matrix elements 
which have only been roughly estimated here. However, the fit as presented, is 
probably sufficiently good so that we can say there is some sense in the ideas 
underlying it.

The percentage E2 mixtures in the table are presented only as an indication 
of the order of magnitude predicted by the theory. The rough estimates as to 
the E2 matrix elements make the values somewhat uncertain.
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Conclusion.

We have seen that the RPC can have a rather important effect 
in an odd nucleus as exemplified by 74 W183. Il is not expected 
that this is an atypical case. For example, the systematic effect 
on the moment of inertia has been noted already (cf. above). 
In some cases (e.g., 7377i181, 71/az1/5, and 63Ez/153), the excited 
state which might cause a rotational admixture has been seen. 
More data in such nuclei would be very revealing. From the 
discussion above it would seem that Coulomb excitation is an 
excellent tool with which to look for the admixed band, because 
the mixing greatly enhances the excitation probability for these 
higher states.
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1. Introduction.

With the recognition that the proton-proton chain reaction 
may provide the greater part of the energy production of 
dwarf stars1) a type of stellar model, which has not so far been 

studied in any great detail, becomes of interest. Indeed, since 
the temperature enters into the rate of tbe proton-proton reaction 
only with a power of about four, the energy production will take 
place in an extended region around the center of the star. Conse­
quently, the existence of the convective core, which is a pro­
nounced feature of point-source models and carbon-cycle models, 
is by no means certain. And even in cases where the convective 
core exists an appreciable fraction of the energy is likely to be 
produced outside the core, and it is necessary to take the varia­
tion of the flux of energy through the star into account.

Previous investigations, which are important in this connexion, 
include papers by 1. Epstein2), and by I. Epstein and L. Motz3). 
These papers give models for the Sun, in which the proton-proton 
reaction is taken into account. A paper by Osterbrock4) gives 
models for red dwarf stars, calculated on the assumption that 
convective layers, extending downwards from the surface, exist. 
A. Reiz5) has calculated a model which is applicable to stars 
composed entirely of hydrogen and helium. It is a special case 
of the type of model considered in the present paper.

The aim of the present investigation is to answer the question: 
Given an energy production law of the form

e = £0o T4 (1)

how do the properties of the star vary with the opacity law?
In answering this question the methods for integrating the 

ecpiations of the equilibrium of the star will first be discussed 
(section 2). Section 3 gives the main results of using the punched 

1*  
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card equipment of the IBM Watson Scientific Computing Labo­
ratory, New York City, for solving the differential equations. 
Altogether twenty different opacity laws have been considered. 
Detailed tables are given for eleven models. Finally, in section 4, 
the models are used to construct the Hertzsprung-Russell diagram 
for stars composed entirely of hydrogen and helium. It will be 
found that the results confirm those obtained independentlv bv 
Reiz5>.

In appendix 1 the power expansions for the behaviour of the 
solutions near the center of the star are developed, while appendix 2 
gives tables for the eleven models discussed in section 3.

2. A method for the integration of the equations 
of stellar equilibrium.

2.1. The fundamental equations. The stellar models to be 
considered in the present paper are specified in the following 
way: 1) The chemical composition is uniform throughout the 
star. 2) The star is in radiative equilibrium except for a possible 
convective core around the center. Convective zones near the 
surface are not considered. 3) The radiation pressure can be 
neglected. 4) The energy production is given by a law of the form

£ = £o Qô Tv (2)

where £ is the production of subatomic energy per gram per 
second, q the density, T the temperature, and £o, ô, and v, 
constants. 5) The opacity is given by a law of the form

(3)

where x is the mass opacity of the stellar material and xo, a, and 
s, are constants. 6) The stellar material behaves like an ideal gas.

The fundamental equations governing the structure of a star 
of these properties are well known. In the present section they 
shall be discussed with special attention to the fact that the 
energy production takes place in an extended region around 
the center of the star. Also, a set of variables, which is particularly 
suited for solution by means of automatic computing machines, 
shall be introduced.
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The starting point is the four standard equations of a star in 
equilibrium :6)

dP/dr GM r (> r 2

dMr/dr — 4 g r2

dLr/dr = 4 r2 £

dT/dr

(4)

(5)

(6)

rad. eq. (7 a) 

conv. eq. (7 b)

Here r denotes the distance from the center of the star, P the 
pressure, Mr the mass contained within the sphere of radius r, 
concentric with the star, Lr the flux of energy across this sphere, 
G the constant of gravitation, a the Stefan-Boltzmann constant, 
and c the velocity of light.

The physical contents of these equations can be stated as 
follows. The first equation is the condition that the star is in 
mechanical equilibrium in its own gravitational field, i. e. that 
the gravitational attraction on any element of matter will be 
compensated by the pressure gradient. Equation (7) is the 
equation governing the transport of energy from the center to­
wards the surface. Il assumes one of two forms, depending on 
whether the main agent of transport of energy is electro-magnetic 
radiation or convective currents, or, in other words, whether the 
point in question is in radiative or convective equilibrium. In 
radiative equilibrium the gradient of the radiation pressure, 
aT4l‘3, becomes proportional to the flux of energy, Lrr~2, and 
the opacity per unit volume, xq. Where convective currents arc 
present the matter will be in adiabatic equilibrium, with the ratio 
of the specific heats equal to 5/3, valid for monatomic gases, and 
the temperature gradient is independent of the flux of energy. 
Equations (5) and (6) express the relation between the micro­
scopic quantities, q and qe, and the macroscopic quantities, 
Mr and Lr- To these equations we must add the equation of 
stale of the stellar material, in our case of a perfect gas,

P = /z-i Q T (8)

where /t is the mean molecular weight, and <11 is the gas constant.
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The quantities z and e describe the physical behaviour of 
the stellar material, z measuring the interaction of the radiation 
and the matter, e giving the output of subatomic energy. Thus 
it is clear that they will depend on the physical parameters of the 
matter and the chemical composition, i. e. we can write

x = z(7j, 7’, chemical composition) 
£ = e((), T, chemical composition).

The problem of computing the structure of a star with a given 
radius /?, mass M, and total energy output L, is now equivalent 
to finding a solution of the eq. (4) to (8) which satisfies the 
boundary conditions

for r = P

The surface temperature can be put equal to zero without any 
appreciable error being introduced. The problem is thus one of 
four simultaneous differential equations with two point boundary 
conditions the fundamental problem of all such work as the 
present.

In order to illustrate the character of the problem we will 
now briefly discuss two different, though mathematically equiva­
lent, methods for solving the problem by means of stepwise 
numerical integrations, namely a) by integrating from the surface 
and b) by integrating from the center of the star.

a) Suppose /?, M, and L, to be given. If we then assume a 
chemical composition we can, by stepwise integration, calculate 
the run of the quantities P, T, Lr, and Mr, as functions of r, 
going from the surface towards the center. In general we will 
find, however, that the two conditions Lr = d/r = 6 for r = 0 
are not satisfied. In order to get the proper solution we must, 
therefore, carry out a number of integration runs, varying system­
atically two chemical parameters.

b) In order to start a numerical calculation from the center
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we must assume given the chemical composition and the central 
values of the density and the temperature, qc, and Tc. As the 
condition that our model is physically possible we have the one 
condition that q and T must vanish for the same value of r. Such 
a model can be found by carrying out integrations for systematic­
ally varied qc, say. Thus, for given composition and 7’c we will, 
in general, determine one definite star with certain values of R, 
L, and M. By also varying Tc we can lind solutions with prefixed 
values of, for instance, M. In this way we have arrived at the 
celebrated theorem of Vogt and Bissell: Given the chemical 
composition and the mass of the star, the radius and luminosity 
follow. Finally we arrive at lhe same conclusion as when dis­
cussing a), that in order to lit the solutions to given values of R 
and L, as well as M, we must vary tivo chemical parameters.

Although the conclusions of the two discussions a) and b) are 
equivalent, the two procedures are still quite different, in that 
a) requires two parameters to be varied in order to find the 
solution with given R, L, and M, while in b) four parameters 
must be varied in order to obtain the same result. This is the 
reason why calculations of the structure and composition of given 
definite stars, as for instance Epstein’s work on solar models, 
is carried out in the manner described as a). Even then a con­
siderable amount of work is required before the eigensolution is 
found, and it is highly desirable to reduce the number of para­
meters to be varied to one, when a more extensive program of 
calculations of stellar models is undertaken, even at the cost of 
some accuracy. This is accomplished by the application of 
homology transformations.

2.2. Homology transformations. We speak of two stellar models 
being homologous when values of the physical variables describing 
one of them can be obtained by multiplying the corresponding 
values for the other model by definite scale factors. Denoting by 
7’o, Rro, Qo, 3/ro, the variables al the point ro in one model, we 
get for the point r = ri in the homologous model

7T = Crro
7’i = C t To 
Lri — ClLto 
01 = C^o 
d/rl = CmMT0 

(10
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The existence of models described by quantities with suffix 1 is 
established only if these variables satisfy the equations (4) to (8). 
In the case of the equations (4), (5), and (8), this is apparently 
so, provided the scale factors satisfy suitable conditions. Equa­
tions (6) and (7), which contain the, as yet, unspecified functions 
x and £, must, however, be considered in some detail. First we 
have, by assumption,

dTo/dro = — 3 (16 7t uc)"1 x0 (po 7’0) QoLro /Ç2 Tq3 (12) 

The condition that the configuration (11) does, in fact, satisfy 
eq. (7 a) is

<n\/dri = — 3 (16 n uc)_1 xi (pi 7)) piCrirf 2 7’f3 (13)

or, using (11),
CrCr-1 dTo/dro = 1

(14)
- 3 (16 % ac)~l CqClC^2C^,3 xi (pi 74) poTro/Ç2 T0~3. |

Comparing (12) and (14) we find that two models are homologous 
if their laws of opacity satisfy the functional equation

xo(t>o7o) = C0CLCr1CT4xi(poC0, 7’oCy) (15)

This will always be the case if the opacity can be written on the 
form

x = xop1_a 7,_3_s (16)

where a and s denote constants, while xo is a quantity which 
varies from one model of the homologous family to the next. 
In quite a similar manner we deduce from eq. (6) that in order 
to make the homologous transformation valid we must have 

e = fiopV. (17)

An application of this result will introduce an important 
simplification in the problem if the opacity and energy production 
can be written as (16) and (17), where the chemical composition 
enters only through the factors xo and £o. In that case the change 
of the chemical composition will only cause the model to vary 
within the same homologous family of solutions. Consequently, 
once a single member of the family has been found, it will be a 
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simple matter to discuss the relation between the chemical com­
position and the parameters of the stellar model, R, M, and L.

We shall now proceed on the assumption of the validity of 
the expressions (16) and (17), postponing the discussion of their 
physical applicability. Then I he problem is solved as soon as 
one solution with the proper boundary conditions is known. 
Adopting the method b) we can now chose arbitrary values for 
xo, £o, and Tc. By varying oc we find the solution which satisfies 
the condition q = 0 and 7’ = 0 simultaneously for some value 
of r, R. This will give us a stellar model with definite values of 
R, L, M, Tc, Qc, xo, £o, and ju. Of these quantities xo, £o, and //, 
are assumed to be functions of the chemical composition. If the 
structure for some other values of R, L, and M, is wanted we 
only have to use scale factors. Of the three conditions to be 
satisfied, one determines the central temperature. The others 
impose two conditions on the chemical parameters. One of these 
is Eddington’s mass-luminosity relation, the other one is the 
condition that the total energy released by nuclear processes 
equals the luminosity.

It should be mentioned that a simplification of the integration 
procedure does not appear in the approach described in a), 
and it is quite obvious that the method b) should be used.

2.3. Homology invariant variables. The method for finding 
the eigensolutions of the fundamental equations outlined above 
could probably be used for the actual numerical procedure. 
Additional simplifications may, however, be introduced by using 
different variables, with the further important advantage that the 
equations become far belter suited for solution with the aid of 
automatic computing machinery. Indeed, as will be demonstrated 
presently, it will be a great advantage to use as variables the 
homology invariant quantities

V = — d log P/d log r = r_1P“1 (18)

U = d log MrId log r — 4 n q (19)

W = d log Lrld log r = 4 tc £0 r3 e1+(5 Tv I^1 (20)

H = V/(n + 1) = — d log T/d log r 1
= 3 xo (16 tc ac) 1 Q2 a Lrr 1 T-7 ® / (21)
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Of these variables V and lT are well known, H is closely 
related to the equally well known polytropic index, n, while W
has been introduced by Osi EHBKOCK and the present author7).
As can readily be show n, the boundary conditions for these
variables are

f = W = 3, V = ff = () for r = 0 (22)

u = w == o, dc, H DC for B — r. (23)

The differential equations satisfied by these variables are deduced 
by logarithmic differentiation of the eq. (18) to (21), making use 
of eq. (4) to (8) and also of the equations themselves. We get

dV/V = (L7 + H—1) dr/r (24)

dU/U = (3 — V + H - U) dr/r (25)

dW/W = (3 — (1 + ô) V — (v — 1 — ô) H — W) dr/r (26)

dH/H — ((9 + ,s — a) H — (2 — a) V + W — 1 ) dr/r. (27)

It is now apparent that we can eliminate the last physical 
variable, r, simply by choosing the independent variable among 
the four homology invariants. The most convenient variable for 
this purpose appears to be F*  and we are then left with the 
equations

dU/dV = U (3 — V + H — F) V-1 (F + H l)1 (28)

dW/dU = W(3 —(1 + <5) V I
(29) 

-(v—l—ô)H - W) V’1 (F + H—I)"1 I

dHIdV = H ((9 + ,s — a) H I
(36)

- (2 — a) V + W—1) V“1 (F + H — I)-1, f

The great advantages of using the variables V, U, H, and W, 
now become apparent. In fact, expressed in these variables, the 
four fundamental differential equations are reduced to three 
differential equations and a quadrature. For, in order to return 
to the physical variables from a solution expressed in the homology 
invariant variables, we only have to perform a quadrature, e. g.

* A similar method has been used by Levee8), who choses W as his in­
dependent variable.
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log r/r0 = r l (U + H—I)“1 dV (31)

and then use the equations (18) to (21). Also, the differential 
equations are very convenient lor treatment by means of auto­
matic computing machinery, because they do not involve expo­
nentials.

Having now demonstrated the advantage of using the vari­
ables (18) to (21) we only have to understand their behaviour 
al the boundaries before we can use them for actual computa­
tions. We have already given the boundary conditions for all 
our variables at the center and the surface of the star, eq. (22) 
and (23). Integrating, as we intend to do, from the center towards 
the surface, the new independent variable, V, varies from zero 
to infinity. In practise one must, of course, break off at some 
suitably large value of V. As to the conditions at the center we 
find, by inserting the values of the variables at the center in the 
eq. (28) to (30), that V = 0 is a singularity, so that a parameter 
is necessary to label a solution starling at the center. This is not 
surprising, when compared with the procedure for solving the 
problem in physical variables discussed above. It is quite clear 
that, also when using the new variables, it will be necessary to 
carry out trial computations, varying one parameter, before the 
solution satisfying the boundary conditions both at the center 
and at the surface is found. As the parameter labeling the trial 
solutions it has been found convenient to use

Ho = (dH/dV) v = o = (nc + 1 ) 1 (32)

where nc denotes the polytropic index at the center of the star. 
The numerical solution cannot be started from the center where 
all derivates become indeterminate. We have, therefore, ex­
panded H, lr, and IV, in powers of V, the coefficients of the 
series being functions of Hq . The evaluation of the power series 
is elementary, but rather lengthy, and has been given in ap­
pendix 1.

Suppose now that a value of Hq is chosen. Using the ex­
pansions of appendix 1 we can then compute H, IV, and U, for 
a value of V close to zero, e. g. V = 0.2. From here we can con­
tinue the solution of the equations (28) to (30) to some large value 
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of V (V = 15 is convenient) by step-by-step numerical inte­
gration. The question is now, what is the criterion that Ho is 
chosen in such a way that the solution corresponds to a con­
figuration in which 1) and T simultaneously lend to zero? In 
order to find Ibis condition we observe that near the surface of 
the star we must have an approximate relation of the kind

Poe Ta (33)

where 7 is some positive number which is left undetermined for 
the moment. But from this relation it follows that near the surface 
we have

n + 1 = V/H = d (log P)/d (log T) = 7 (34)

i. e. near the surface the polytropic index must tend to a finite 
positive limit. The actual value of this can now easily be found 
from the eq. (30). Near the surface we can neglect the constants 
and the functions U and W in comparison with H and V, which 
increase beyond any limits. Writing no for the value of n at 
the surface, we have then

H = V/(n0 + 1 ) (35)
and we find

no + 1 = (8 + s — a)/(2 — a). (36)

The required criterion is that the quantity V/H lends to this 
limit for large V.

It is of considerable interest to know what happens if lhe 
parameter H() is not chosen to be equal to the eigenvalue. The 
numerical work shows that lhe solutions are extremely sensitive 
to variations of this parameter. In fact, if //0 is chosen only 
slightly below the eigenvalue, H will reach a maximum and lhe 
denominator U -T H — 1 will become zero for some finite value 
of V. If, on the other hand, Ho is chosen larger than the eigen­
value, H will increase so as to make n + 1 — V/H< 2.5 at 
some value of V. At this point the equation of radiative equi­
librium will cease to be valid. Only if Ho is chosen quite close to 
the eigenvalue will the solution ever reach V — 15. Generally, 
the sensitivity of the solutions can be understood from the presence 
of the rather large coefficient 9 + s — a in eq. (30). In the eigen- 
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solution the quantity (9 + s — a) H — 1 + W — (2 — a) V will 
remain small only because the first and the last term nearly 
cancel. Any deviation from this solution will quickly be amplified, 
when the solution is followed towards larger V.

Once the eigensolution, expressed in homology invariant 
variables, have been found, there remains the problem of cal­
culating the solutions expressed in physical variables. This 
calculation necessitates one further integration, e. g. the quadrature 
(31). The variables Mr, Lr, P, and T, could then be found by 
means of the eq. (18) to (21). The automatic computing machinery 
being available it was, however, more convenient to evaluate all 
of the physical variables bv means of quadratures. From the eq. 
(18) to (21) and (24) to (27) we find

(37)

log P - \ dV/ÇU T H —- 1) + constant
Jr»

log T - \ HdV/V (F + H — 1) + constant
»JVo

log Mr = \ UdV/V(U + H — 1) + constant
Jf.
,.y

log Lr = \ WdV/VfJJ + H — 1) + constant
♦Jf0

The constants of integration were chosen so that the functions 
log r/R, log P/Pc, log T/Tc, log Mr/M, and log Lr/L, resulted. 
For log r and log Mr this made an analytic approximation of the 
solutions beyond V = 15 necessary. This was derived in the 
following manner.

2.4. Expansions valid near the surface of the star. Let us, 
following C. M. and H. Bondi9), introduce the three homology 
invariant variables

Q = — d log r/d log P = V-1 (38)

s = - (/log Mr/(/log P = U/V (39)

X (/log T/(/log P = (n + I)“1 = H/V. (40)
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These variables are convenient near the surface where V and 
H tend to infinity. Using eq. (18) to (21) and remembering that 
Lr = L near the surface we now get

dQ/Q = dr/r — dMr/Mr + dT/ T = (—() + 8 + A7) dP/P (41)

d8/8 = 4 dr/r — 2 dMr/Mr + dP/P = (1 — 4 () + 2 S) dP/P (42) 

dN/N = (2 — a) dP/P — (8 + s — a) dT/T — dMr/Mr I
= [(2-a)-(8 + s —a)N + S] dP/P. j

Owing to its close relation to V we shall find it convenient to use 
() as the independent variable, rather than 8 as used by Bondi 
and Bondi. We then get the differential equations

d8/dQ = 8(1—4() + 2 8)()-1(8 + A< —(?)-i (44)

dN/dQ = A+(2 — a) — (8 + s—a) N +8) ()-1 (8 + AT—())-1. (45) 

We intend to use these only for V>15, i. e. for ()< Q<1/15.
Also, 8 is small near the surface, and thus we have approximately

dS/dQ = SQ-1 A',,1 (46)
whence

S = A-i()1/x“ (47)

where A is a constant. This approximation is belter than might 
at first be expected. This is due to the fact that N, in the applica­
tions, usually is close to 1/4, so that N (1 —1 () + 2 8) (8 + N— Q)1 
remains close to unity even for rather large values of ().

The variable ;V will be nearly constant equal to

A'o = (1 + n0) 1 = (2 — a)/(8 + s — a) (48)

near the surface. A better approximation can be found if eq. 
(45) is analysed with respect to the importance of the various 
terms. It becomes apparent that for small variations of N it 
makes sense to regard N/(N + 8 — ()) as a constant at the same 
time as the variation of (2 — a) — (8 + .$ — a) Ar + 8 is taken 
into account. In fact, this latter quantity can be written

— (8 + s — a) (A — Ao) + 8.
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At the surface we have S = 0, and near the surface the two 
terms are comparable. This suggests that it would be a good 
approximation to write

A" — AT = BS (49)

where B is a suitable constant. For its determination we get from 
(45)

BdS/dQ = AT (AT + S — QrW-1 (1 — (8 + s — a) B) 

or, using (46),

B = AT (3 — a — 77 (n0 + 1) Q)_1. (50)

Strictly, S and Q are zero where the approximations are valid. 
The form given, eq. (50), suggests that slightly better results 
would be obtained for finite values of () if a coefficient B, which 
is slowly increasing with Q, is used, r/ being a factor less than, 
but of the order of, unity.

We now get from eq. (38) and (41), corresponding to (31),

log r/B = -\(AT + S-Q)-T/(). (51)
•Jo

Beginning with the most important, the order of magnitude of 
the quantities is, AT, Q, N, and Ar—AT. We can therefore expand 
the integrand

ÇV + S_Q)-1 = (AT-Q)-i-(l +B)(AT-Q)-2S. . . (52) 

where we have used (49). The first term can be integrated 
exactly. In the second term we use the first two terms of the 
expansion for (AT — Q)-2. In this way we get

logior/B = logio(l — (MT T)

To +
no + 2 \

2 (n0 + 1) (no+ 2) \ 
no+ 3 J

SQ log e (1 + B)
(53)

where we have used eq. (48).
The approximation for log Mr/M is derived in the following 

way. Using eq. (39) and (41) we find
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log Mr/M = - \ SQ 1 (Ar — () + S)-1 <ZQ (54)
♦ o

Inserting the expansion (52) \ve tind that none of the terms can 
be integrated exactly, and we have to expand (2Vo — ())_1 and 
(A'o — Q)~2 in power series in QN^1. Using (47) we can integrate 
term by term, and gel, after some reduction,

As an illustration of the use of these relations we take the 
following values which have been obtained from one of the 
integrations described in section 3. 'Flic constants of the model are

We then find from (36)

a = 0.5
s = — 2.1.

n0 + 1 = A'o 1 = 3.6.

The integration from the center gives for V— 15:

U = 0.2162.

Then, from (38) and (39),

S = 0.0144
() = 0.0667.

From (50) we lind
B = 0.12,

and from (53) and (55)

logior//? = 9.8826 — 10 
logio;Wr/M = 9.9926 — 10.

Fhe expansions are equally useful for starting integrations 
from the surface. In this case each solution will be specified by 
the value of the parameter .4 (eq. (47)). Choosing a starting value 
for V the expansions will provide values of Ar, r//?, and Mr/M.
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(56)

the central temperature constant,

(57)

the constant in the mass-luminosity relation,

7 + s

(58)

1) = £CM/L. (59)

F = (60) 

E = (61)

C = (62) 

I) = (63)

2

which, expressing L, R, and M, in solar units, becomes

and the ratio of central energy production rate to mean energy 
production rate,

Using the eq. (18) to (21) it can be shown that these parameters 
satisfy the relations

It should be noted that the quantities on the right hand side 
are independent of the point in the star which is used in their 
determination. This constancy can serve as a check on the last 
stage of the calculation of the solutions.

Dan. Mat. Fys.Medd. 30, no.16.

2.5. Invariant parameters of the models. In addition to the 
functions (37), the invariant parameters, which specify the 
models, must be found. Corresponding to the homology trans­
formations each model can be characterized by four parameters. 
In an obvious extension of the convention adopted by Chandra­
sekhar10) we choose the parameters to be the following:

The ratio of central density to mean density,

F = QcIq,

3
4 (4 tt)3_a ac

LR?X + 8 zo
log C = — 27.0448 + 0.3274 a —7.3638 s + log--------- -------- ,

°M5 + s+a//7 + s
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2.6. Convective cores. Up to this point the question of con­
vective cores has been ignored. It is, however, very easy to extend 
the already developed procedure for integrating the equations of 
equilibrium of a star to the case of a star with a convective core. 
As is well known, the structure of a convective core is described by

T=Tc0(£) (64)

2 = (?c 0 (£)3/2 (65)

where 0 is the Emden function for the polytropic index n = 3/2, 
and £ is proportional to r. The function 0, together with V and 
C expressed as functions of £, have been tabulated11). Further­
more we have

11 = V/ (n + 1) = 2 V/5. (66)

Suppose now that the core extends lo a value of V = VCOre- 
Outside this point eq. (30) replaces (66). Al Vcore all our vari­
ables, including V, U, 11, and IV, must be continuous, and we 
can lind the proper starting point for the numerical integrations 
from their values on the boundary of the core. Of these V and U 
are known from the tables quoted above, and H is found from 
eq. (66). The variable IV, finally, can be found for any point 
in the core, using (20), (6), (17), (64), and (65), which give

IV = pgv+3

I bis quantity is a function of £ and v + 3 <5/2 only and has been 
tabulated by the present author12).

Having thus determined V, U, IV, and H, on the boundary 
of the core we can carry out the stepwise integration of eq. (28) 
to (30) to see whether the condition (36) is satisfied for large V. 
If not, it is a sign that the core has not been assigned the right 
extent.

2.7. Summary of the method. As a summary of the present 
section, here is a short directory in the use of the method :

(liven the four exponents, a, s, d, and v, lind the series expan­
sions valid near the center, using the formulae of appendix 1. 
It is most convenient to choose a suitable small value of V, e.g. 
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0.2, and then, by using the Taylor series, to find U, IV, and H, 
as polynomials in Ho. (If it is known already from other evidence 
that the model possesses a convective core, this calculation and 
the following one can, of course, be omitted.)

In order to determine whether a convective core is present 
or not, compute a triai solution, starting with nc = 3/2, i.e. 
Hq — 0.4, and using (28) to (30) for a step-by-step integration. 
If H or U -f- H — 1 become zero, a convective core is actually 
present. If, on the other hand, // increases so rapidly as to make 
n + 1 = V/H smaller than 2.5 at some point no convective core 
is present.

Priai solutions corresponding to varying initial conditions 
must now be calculated until a solution is found for which the 
polytropic index n + 1 = V/H approaches the proper surface 
value (36) for large values of V. The parameter to be varied is 
/70 in the cases of no convective core, and VCOre when a core is 
present. In the latter case the initial values are taken from the 
tables of the Emden functions, as described in section 2.6.

The run of the physical variables can now be found, r following 
from (31), and the other variables from eliminations among the 
eq. (18) to (21 ), or from the quadratures (37). If the five physical 
variables are expressed in units of /?, Pc, Tc, M, and L, the series 
expansions (53) and (55) will be useful.

With the complete solution thus computed the constants of 
the model follow from (60) to (63).

3. Numerical results.

3.1. The use of the punched card equipment. In the preceding 
section it has been shown that the calculation of the structure 
of a star with the opacity given by z = xo ol a T~3s and the 
energy production given by e = eq co Tv can be reduced to the 
stepwise integration of the eq. (28) to (30). In this section we shall 
describe how the calculations for the case e = eo q T3 4 have been 
carried out by means of the IBM punched card equipment at 
the Watson Laboratory, New York City, and the results obtained 
will be given.

Before any numerical calculations can be made, the differ­
ential equations must be approximated so as to permit a solution

9*
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in a finite number of algebraic operations, which is, essentially, 
a problem of replacing the integrals by suitable summations. For 
this purpose a process of successive approximations was used. 
In the first approximation the solution was computed by repeated 
expansions, using only the first term of the Taylor series, according 
to the formulae

/ m+1 — Um A d V (dL fd\ )m 

IV m+1 — VI m d V (</VI I(I\ )m 

Hm+1 = Hm + d V (dH/dV)w

(68)

where d V stands for the constant steplength of the independent 
variable, and we have used the subscript m to denote the value 
of the variables al the point Vm = Vo + nt d V. Thus, in the 
first approximation, we get tables of the three variables U, VV, 
and H, which, however, do not exactly satisfy the differential 
equations. These tables can then be used to calculate good ap­
proximations for second order terms in the expansions, e.g.

x/2 (d V)2 (J2 U/dV^)m Um+i - 2 Um + Grø-i (69)

and a second order run can then be computed using

Um+1 = um + d V(dUldV)m + V2 (d V)2 (d2/7/</V2)m (70) 

and similarly for IT and H.
The efficiency of this method depends strongly on the step­

length, d V, which must be chosen small in order to make the 
process converge rapidly. A value of d T of 0.1 was found 
suitable when four decimal places were carried. In fact, no 
higher approximations than the second were needed.

In the course of the calculations extensive use was made of 
the excellent collection of computing machines at the IBM Watson 
Laboratory. However, the only particular technique worth men­
tioning in the present connexion is the one used for solving the 
eq. (28) to (30) by means of the model 604 electronic calculating 
punch. This machine has a rather small capacity for numbers, 
a total of only 50 digits. It was found possible to solve the differ­
ential equations only by using two punched cards to advance the 
variables by one step. In this way numbers may be stored pro­
visionally on a card while it passes from the punch station to the 
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second reading station. Use of this technique, and of the selective 
circuits of the machine, made it possible to fit the variables into 
the capacity of the machine. The speed of the process was 50 
integration steps per minute. During the search for the eigen- 
solutions several hundred integration runs were performed.

The other problem of the numerical solution of the equations 
is the sensitivity of the solutions against variations in the initial 
values. Owing to this sensitivity any deviation of the trial value 
of Hq from the eigenvalue will cause the solution to end at a 
physically impossible point, either n = oo or n = 0. The sensi­
tivity is so strong that a solution which is started from the point 
V = 0.2 and calculated with four decimal places will rarely go 
beyond V = 6 before an impossible point is reached. Thus one 
can have two starting values of at V = 0.2, differing by one 
unit in the fourth decimal, one of which will cause n to vanish 
at V = 6, while the other will send n off to infinity before V = 6. 
One way of overcoming this difficulty would be to carry more 
decimals. This was, however, not possible with the 604. Another 
method is suggested by the following table, which shows some 
results of two runs:

H’o = 0.3605 Ho = 0.3610
V U W H U W H

0.2 2.9232 2.6846 0.0708 2.9233 2.6844 0.0709
3.0 1.8551 0.3200 0.8340 1.8662 0.3213 0.8682
5.4 oc
5.8 0.0000

It is apparent that the two solutions, which differ widely at 
V = 5.5 are still close together at V = 3. It therefore suggests 
itself to start further runs from V= 3, interpolating the initial 
values between the two solutions:

V = 3

U = 1.8551 + 0.01 1 1

IU = 0.3200 + 0.0013

H = 0.8340 + 0.0342

where y is a parameter to be determined by further integrations. 
This method proved to be quite satisfactory, but had to be used
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O a O 25 0.5
Fig. 1.

O. 75

several times for increasing valnes of V, usually at V equal to 
3, 6, and 10. Only the solutions started at V = 10 could be 
followed as far as U= 15. The result of this procedure was a 
pair of solutions lying closely on either side of the eigensolution 
for each of the intervals in V between 0, 3, 6, and 10. The finally 
adopted solution was found by linear interpolation between these 
pairs, use being made of the interpolation factors y as defined 
above. As a check, the final solution was compared with the 
differential equations. Usually the error in the increase of the 
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solution for one step was found to be within one unit in the 
fourth decimal, and only in a single case a deviation of as much 
as four units was encountered. This fully justifies the procedure. 
It is interesting to note that if all runs had been calculated all 
the way from V = 0.2, at least ten decimals would have been 
necessary in the calculations.

3.2. The behaviour of the convective core. During the initial 
stages of the work twenty different opacity laws were considered, 
viz. all combinations of a = 0.0, 0.25, 0.5, 0.75, and 1.00, and 
.s = +0.5,—0.5, — 2.1, and —3.0. In this way the two important 
cases of constant opacity (a = 1, s = —3.0) and Kramers opacity 
(a = 0, .s = +0.5) and a number of intermediate cases were 
covered. At the later stages only eleven of the cases were investi­
gated. However, the material gives information concerning the 
extent of the convective core for all of the twenty models. This 
information is represented in figure 1. This diagram also shows 
the results of applying the criterion for the existence of a convective 
core to the model in question7), 12>. It is apparent that this criterion 
alone is sufficient for a reasonably good first indication as to 
whether a core may be expected or not.

3.3. Invariant parameters of eleven models, 'fable 1 gives the 
invariant parameters of the eleven models which have been con­
sidered in detail, calculated according to eq. (60) to (63). For 
/?, M, and L, solar units have been used.

The principal results of an inspection of this table are the 
following :

a) For given R, M, and p, Tc increases for increasing a and s. 
Speaking in terms of figure 1, Tc increases towards the upper 
right of the diagram. For models along the line connecting Kramers 
and constant opacity the central temperature is nearly constant, 
decreasing slightly towards the latter.

b) Qualitatively, the ratio qcIq varies in the same way as the 
central temperature. However, the drop of the density concentra­
tion towards the constant opacity end of the diagram is more 
pronounced than is the drop of central temperature.

c) The ratio ec M/L is nearly constant, independent of the 
opacity law.
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Table 1.
e = £o?T4 x = xoe1-a 3~s

Model
no. a

log RTc!(iM
- log E

log
= log F log C + 10

log ec M/L
= log D

1 0.00 -}- 0.5 7.317 1.642 4.076 0.942
2 0.25 + 0.5 7.416 2.005 4.567 0.951
3 0.50 + 0.5 7.604 2.658 5.385 0.964
4 0.25 — 0.5 7.295 1.529 4.761 0.942
5 0.50 — 0.5 7.397 1.913 5.206 0.951
6 0.75 0.5 7.615 2.664 6.002 0.965
7 0.50 2.1 7.204 1.153 5.761 0.925
8 0.75 2.1 7.280 1.431 6.022 0.942
9 1.00 — 2.1 7.434 1.982 6.465 0.963

10 0.75 — 3.0 7.174 1.040 6.508 0.915
11 1.00 -3.0 7.253 1.316 6.716 0.933

3.4. The structure of the models. In appendix 2 the variation 
of the physical parameters through the eleven models is given. 
In the calculations four decimals were carried throughout. The 
figures given have been rounded to three decimals.

The figures termed variations give variations of the funda­
mental variables U, IT, and H, for variations of the initial values. 
They correspond to the coefficients of y as used in eq. (71). 
The corresponding variations of the initial values could not be 
determined with any accuracy.

4. Applications of the models.

4.1. The Sun. The integrations described in section 3 have 
been used for the construction of two different models for the Sun. 
During this work the integrations were only used to describe the 
central parts of the Sun, use being made of the variations explained 
in section 3.4, while the exterior regions were convered to a large 
extent by the series expansions of section 2.4. It was found possible 
to fit the model to a physically given opacity, which contained 
contributions from the heavy elements, free-free transitions in 
hydrogen and helium, and scattering on free electrons. Details 
of these models have been published elsewhere13).



Nr. 16 25

4.2. The hydrogen-helium star. The most natural application 
of the models is the construction of the Hertzsprung-Russell 
diagram for stars composed entirely of hydrogen and helium, 
since the models are based on an energy production law of the 
type (1). Indeed, the energy production by the proton-proton 
reaction is given by14>

e = 10-29.0054 X2 Q TX

Here X is the abundance of hydrogen, by mass. However, in 
such a star the opacity will be due to scattering on free electron 
and free-free transitions in hydrogen and helium, and cannot 
directly be expressed in the form (16). The principal question 
is thus how to apply our models to stars in which these two agents 
both contribute to the opacity. In this question we choose the 
following approach.

According to the theorem of Vogt and Russell the structure 
of a star is uniquely determined by the mass and the chemical 
composition. In a mixture of hydrogen and helium there is only 
one chemical parameter. Consequently our stars form a two- 
parametrical sequence, the parameters being the mass, M, and 
the hydrogen abundance, X. Consider now the two contributions 
to the opacity. In general it will, of course, be necessary to take 
both of them into account. It seems likely, however, that in a 
certain region of the (3/, X)-diagram the electron scattering will 
be negligible. The behaviour of our stars in this region will then 
be given by the model based on an opacity law of the form

x = 2.74 • 1022 (1 + X) g (72)

where the constant is the one used in the construction of the 
solar models13).

Correspondingly, we expect to find, in another region of the 
(Af, X)-diagram, that the free-free transitions can be neglected 
in the opacity. In this region we can then use the model based on

x = 0.2 (1 + X). (73)

In the remaining part of the (47, X)-diagram we must take 
both the free-free transitions and the scattering into account. 
Here we may hope that one or more of the models, based on 
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opacity laws intermediate between the two already quoted will 
be of use. As explained below this is indeed the case.

Model 1.
Free-free transitions predominate.

Our first task, when using this model, is to determine the 
region in the (M, A)-diagram in which the scattering is negligible. 
We therefore first investigate how the opacity varies through 
this model, using the table of appendix 2,

V r/R log (qIqc) (T/Tc)-3-5
0 0.00 0.00
6 0.41 0.45

15 0.72 0.63

We see that the Kramers opacity factor increases outwards 
in the star. We therefore only have to know that the scattering is 
relatively unimportant at the center to conclude that it is so 
through the whole star. On the basis of the four invariant con­
stants of the model and the homology transformations we can 
convert the condition that the ratio of scattering' opacity to free- 
free opacity has a definite value at the center into a relation 
between M and X. Indeed, using eq. (56) to (59) and demanding 
that the scattering opacity of eq. (73) is less than 10 °/0 of the 
free-free opacity of eq. (72) we get

log M <— 1.0597 + — log (1 + Ar) A"2/t-46. (74)
o --

Table 2 gives this function together with some more data for the 
corresponding stars.

Table 2.
Model 1. The sequence for which ^scatteringMfree-free = 0-1 at 

the center of the star.

X Max log M 1 log 7? log Tc log pc log L i/4 log LR -

1.00 9.38 9.85 6.55 0.85 6.49 9.20
0.75 9.27 9.75 6.60 1.03 6.51 9.25
0.50 9.13 9.63 6.67 1.26 6.53 9.32
0.25 8.94 9.45 6.78 1.61 6.53 9.41
0.10 8.80 9.26 6.91 2.03 6.50 9.49

The model does not possess a convective core.
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It is apparent that the present model is valid only for very 
red dwarfs.

Model 8.
Free-free opacity and scattering opacity compete.

We shall now try to tind a model which can be made to 
represent the case that the opacities from the two sources, eq. 
(72) and (73), are of the same order of magnitude. It is therefore 
necessary to adopt a method for combining the two contributions. 
In the present survey it was judged sufficiently accurate simply 
to add them together. We thus represent our physical opacity by 
the expression.

«physical = 2.74 • 1 ()22 (1 + X) Q T~9-5 + 0.3 (1 + X) (75)

where the customary factor of 3/2 has been applied to the scatter­
ing. We now want to tind a model in which the opacity, given by 
(75), runs closely to a function of the form (16). For this purpose 
we proceed as follows: Using the tables of appendix 2 we can 
compute the run of the actual opacity through each of our models. 
We have, in fact,

(76)

Also, we can compute the run of the free-free opacity from

(77)

The condition that the particular model is useful in the present 
context then becomes that there exists a relation of the kind

(e/^)1-« (T/Tc)-3-« = x (qIqc) (T/Tc)-3-5 + y (78)

where x and y are positive.
This test was carried out for the nine models available with 

the result that it was found that in model 8 we have

(o/oc)°-25 (T/Tc)-°-9 = 6.110 (qIqc) (T/Tcy3-5 + 0.954 (79)

within an accuracy of 6°/0 throughout the star.
The two terms on the right hand side of (79) represent the 

contributions from the free-free transitions and the scattering. 
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At the center we thus have a contribution from the free-free 
transitions of 10°/0. At r/K = 0.73 they contribute by 44 °/0.

The present model places a strict condition on the value of 
the opacity at the center of the star. In fact, for the terms of eq. 
(75) and (79) to be proportional at the center we must have

0.3 • 0.110
0.954 • 2.74 • 1()22

— 1Q-23.90 (80)

Further, the constant of the opacity law becomes

«o = 0.3145 (1 + X).

The invariant constants of the model now give

32 log M = 16.666 + log (1 + X) co /z-49.

(81)

(82)

This gives a one-dimensional sequence of stars. It has been 
tabulated in Table 3.

Table 3.
Model 8. The sequence of stars in which the free-free transi­

tions contribute 10% of the opacity at the center and 44 % at 
r/7? = 0.73.

— —-------------
X log M log R log Tc log oc log L Vi log LT?-2

1.00 0.08 9.86 7.20 1.31 0.26 0.13
0.75 9.9(5 9.76 7.25 1.48 0.24 0.18
0.50 9.81 9.64 7.31 1.70 0.22 0.23
0.25 9.62 9.46 7.41 2.05 0.17 0.31
0.10 9.46 9.27 7.53 2.46 0.09 0.39

The convective core extends in this model to r/77 = 0.16, includes 
10% of the mass and 51% of the energy production.

Model 9.
Electron scattering predominates.

This model was computed on the assumption that x is constant. 
The condition that it is useful in the present investigation is that 
the opacity due to the free-free transitions is small. We therefore 
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first consider the variation of the corresponding factor through 
the star:

V log (»/£>„) (T’/'/’c)-3'5
0 0.00
5 0.65

10 1.03

It is apparent that the importance of the free-free transitions 
increases as one moves outwards in the star, like in model 1 and 8. 
This increase continues even to the surface. Here we have, in 
fact, P dc 7’4 so

g T~35 oc y-o.5 (near the surface). (83) 

Since there exists no region where this model is strictly applicable 
we must contend ourselves with some reasonable condition for 
the unimportance of the free-free transitions. As such we adopt 
that they must contribute by 10 °/0 or more only at points exterior 
to V = 15, r/R = 0.74. Table 4 has been calculated on this 
assumption.

Table 4.
Model 11. In the sequence of stars given the free-free transi­

tions contribute by 10 °/0 to the opacity at r/R = 0.74.

A' log M log P log Tc log (?c log L V4log 2 P !P1 r 1 c

1.00 0.60 9.98 7.58 1.37 2.35 0.60 0.035
0.75 0.48 9.88 7.63 1.53 2.33 0.64
0.50 0.33 9.76 7.69 1.76 2.31 0.70
0.25 0.14 9.58 7.79 2.10 2.26 0.78
0.10 9.98 9.39 7.91 2.51 2.18 0.85 0.056

The convective core in this model includes 24°/0 of the radius, 
22°/0 of the mass, and 78 °/0 of the energy production. Pr is the 
radiation pressure at the center.

The Hertzsprung-Russcll diagram.
The results quoted have been collected in the accompanying 

HR-diagram. Additional results, for stars with log M = 0.5, have 
been plotted. With this value of the mass the radiation pressure
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becomes appreciable, and the basis of the model breaks down. 
For comparison the points corresponding to the data for the Sun, 
Y Cygni and Krueger 60 A, have also been plotted (fig. 2).

The results of the present section may be compared with 
those obtained by A. Reiz5). Reiz has calculated a model of the 
type considered in the present paper, based on the opacity law

n — zo o0,5 T-1'75. (84)

It is found that the present results agree well with those found 
by Reiz.
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Appendix 1.

Expansions for the central region of the star.
In this appendix the series expansions valid at the center of 

the star will be derived. V will be taken as the independent 
variable throughout. Thus, dashes denote derivatives with respect 
to V, and subscript zero values of the functions at V = 0, i.e. 
at the center of the of the star, 'flic formulae will be derived such 
as to be equally useful for a star in convective and radiative 
equilibrium at the center. Expressions whose validity is confined 
to one of these cases will be distinguished by rud. eç. or coni), eq. 
written in the bracket together with its number.

It will, in this section, be convenient to introduce symbols 
for some particular functions. Thus we define

T = H/V

g = 9 + .s —■ a

S = (g H — (2 — a) V + W — 1)/(U + H — 1)

(85)

(86)

(87)
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P = L7(P+ H - 1) (88)

Q = (3 - V+ H - U)/V (89)

A = W/(U + H — 1) (90)

b = v — ô — 1 (91 )

B = (3 —(1 + <5) V—b/7—W)/V (92)

Then the differential equations (28) to (30) can be written

H' = ST (93 rad. eq.)

U' = PQ (94)

VV' = AH (95)

In convective equilibrium eq. (93 rad. eq.) is replaced by

Hq = Hq = Hq etc. = 0 (96 conv. eq.)

On the basis of these expressions we want to find the first 
and higher derivatives of U and W, and the second and higher 
derivatives of H, at V = 0, subject to the conditions

Uo = Wo =3 (97)

//o = 0 (98)

In all these derivatives H\} will enter as a parameter (cfr. section 
2.3).

First differentiation.
Using (98) we have the Taylor expansion

H = H'<> V + >/2 V2 +1H",' V3 . . . (99)
6

Then from (85)

T = H'„+ >/2 V2. . . (100)

TO = H'O. (101)

From (87) and (88) we get

So = 1 (102)

Po = 3/2. (103)
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At V=0, Q becomes indeterminate. We can find the limiting 
value by using the standard rule of differentiating the numerator 
and denominator sepcrately (this rule will be used frequently 
in what follows) and obtain

Qo = -l+Hi-U;. (104)

Further, using (94), we get

= -PoQo = — 2 O — o + o) (105)

and solving for Uo

=-| (1-«!,)• (106)

Then (104) becomes

Qo = -|(l-Hi). (107)
3

The following quantity will also be useful

U; + H; = (8Hj-3)/5. (108)

From (90) and (92) we now get

Ao = 3/2 (109)

B0 = -(l (110)

and from (95)

1V; = A„ B0 = -3(l +O/2-3hW;/2-3 w;/2. (Ill)

Solving for Wo:

W; = -3((l +0) + bH'0)l5 (112)

and inserting in (110)

Bo = 2 W'„I3 = -2 ((1 + <5) + hH'0)lä. (113)
Dan. Mat. Fys. Medd. 30, no.16. 3
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Second differentiation.
Differentiating (100) we gel

7 = 1/2 H 0 + 77 0 V/3 (114)

and

7 o = 1/2 770 . (US)

Further, from (87),

S' = (^77' —(2 — a) + 1V')/(U +77-1) |
- (9H-- (2 - «) V + IV-1 ) (£7' + H') (u+ H-1 )-2. ) ( 116)

Using (97), (108), and (112), we obtain

S'o = ((5 # — 3 b — 8) 77q — 10 + 5 a — 3 <5)/10. (117)

Now, from (93), (115), and (101)

77o — 7>o 70 + So To — 1/2 77O + 770S0 (118 rad. eq.)

and solving for Ho, using (117),

77q = H'o ((5 g — 3 b — 8) H'o— 10 + 5 a— 3 <5)/5 . (119 rad. eq.)

Differentiation of (88) yields

P' = p'/(U + // — 1) — U(U' + 77') (U+ 77— l)-2 (120) 

and inserting (100)

P' = 3(1 -6 H'OI'M. (121)

Differentiation of (89) gives

(/ = (—1 +77' —U')/V—(3—V + 77—U)/V2 = 1 
(122) 

(-1 + 77' —U'-Q)/V.

By the standard limiting ride we get

Qo = 77o — Lo — Qo
or

Qo = 1/a 77o — 1/2 ('0.

(123)

(124)
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Wc can now calculate

U» = PoQ'o + P,',(?,>

= 3 Hi'/4 - 3 4'0/4-3 (6 - 7 H/, + 1)/ 50
(125)

and, solving for Uq, obtain the results

LT0 = 3 Hq/1 — 6 (6 H'2 — 7 H' + 1)/175 

Q'„ = 2 H"/7 + 3 (6 H? - 7 H'„ + 1)/175.

(126)

(127)

Inserting (119) in (126) we get

U'o = 3 ((25 ^-15 5-52) H^2

+ (25 a — 15 ô — 36) Ho — 2)/l 75.
(128 rad. eq.)

By differentiation of (90) we get

A' = W'(LT + H—I)“1 —W(G' + H')(H+ B—l)-2 j 

= U7/(G+H—l)-1 —A(LT, + H,)(U+H—l)-1 J
(129)

and, using (108) and (112), the limit

a; = — 3 ((8 + 2 5) H'o + 2 Ô — l)/20. (130)

For B' we get, from (92),

B' = (_(i+5)-5H'-W')/V-(3-(l+5)V I
 bH  W)/V2 = (— (1 + 5) — bH' — W — B)/F / (131)

which gives the limit

B,', = - ‘/s 6H" - >/2 »’i’. (132)

Now the equation for W" can be derived from (95), (130), and 
(132). Solving this equation we get

WÖ = 6 ((8 5 + 2 52) Hq2 + (8 + 5 + 8 5 + 4 5 5) H' | 

-1+5 + 2 <52)/175 — 3 bHÖ/1.

Then Bo can be found :

B' = — 3 ((8 b + 2 52) Hi2 + (8 + b + 8 Ô + 4 Ô b) H'o

— 1+5 + 2 52)/l 75 — 2 bHo/l.

| (134)

3*
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Inserting (119) into (133) we gel

Wq = 3 ((56 b + 19 b2 — 25 /?</) Ho2

+ (16 + 52 b + 16 b — 25 a b +

23 <5 b) H' — 2 + 2 d + 4 h2)/l 75.

( 135 rad. eq.)

Th ird di/feren t iation.
The general procedure for deriving the derivatives having 

been made clear during the two first differentiations, we need 
only give the principal results of the third differentiation.

S'' = Ho (— 10 + 7 -y — 3 h)/l4 + [H'o2 (484 + 216 b — 280 + 

12 b2) + H'o (398 — 57 5 + 21 6 Ô + 105 g — 280 a + 24 ô b) 

— 210 — 57 ô + 105 a + 12 b2]/350.

(136)

H"’ = 3 [Hé3 (350 g2 + 1 20 b2 — 390 g b — 1370 g + 822 b + 1332) 

+ Ho2 (525 a g — 285 ba — 315 g b + 195 b b — 1 090 a — 945 g + 

513 b + 702 b + 2018)

+ Ho (175 a2 + 75 ô2 — 210 a h — 595 a + 363 5 + 490)] /700.

(137)

p" =  6 HÖ/1 + 3 (348 H'o2 — 196 H'o + 23)/700. (138)

L’"' = h"73 + 2(1-2H;)H"/7 j 
+ 4 (12  20 + 9 H'„ — 1)/175. |

u’’’ = [Il'o3 (350 g2 + 120 b2 — 390 g b — 1 770 g + 1062 b + 

2164) + Hq2 (525 a g — 285 ha — 315 g b + 195 <5 5 — 745 g — 

1490 a + 393 b + 942 b + 2178) + Ho(175 a2 + 75 <52- 

210 a b — 395 a + 243 b + 234) — 16]/700 .

( 140 rad. eq.)

A” = 3 H'o (— 5 — h )/1 4 + 3 [ H('2 (8 b2 + 144 b + 484) + 

Hq (16 ô 5 + 144 Ô — 38 b — 234) + 8 b2 — 38 b + 23J/700.
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WÔ" = — bH'ô’13 + 2 Hé' [ H'o (13 b + 3 52) + 3 Ô h + 5 5 4- 5]/35 

+ 2 [Ho3 (2 h3 — 24 b2 — 146 b) + H'o2 (6 ô b2 + 15 b2 — 48ôb 

+ eg b — 146 ô — 146) + H'o (6 ô2 b + 30 ôb+3b— 24 ô2
(142)

69 ô + 93) + 2 ô3 + 15 ô2 + 3 Ô — 1 ()]/875 .

Wo" = [Hj3 (— 1750 bg2 — 944 b3 + 2550 b2g + 9450 bg

— 6822 b2 — 11988 5) + H'q2 (— 2625 b oc g 4- 2175 bg ô

4- 2025 b2 oc — 1647 ô b2 4- 8050 oc b 4-4725 bg — 3645 b2 — 

7014 bô + 1000 <j 4-1000 <76 —15338 b — 2768 ô — 2768) +

Hq (— 875 b oc2 — 687 b ô2 4- 1650 oc ô b 4- 2975 b oc — 2775 <5 b

+ 1000 a 5 — 792 b2 — 2426 b —2048 <5 + 1000 a — 1256)

+ 16 63 4- 120 ô2 + 24<5 —80J/3500.

( 143 rad. eq.)

Summary of the equations.

The definitions which will be needed when using the equations 
of the present appendix are given in eq. (2), (3), (86), and (91). 
The general form of the results is described in section 2.3.

The developments are arranged so as to be equally useful 
for convective and radiative equilibrium. The particular formulae 
to be used in the two cases are the following:

Function Convective equilibrium Radiative equilibrium
h'o H'o = 0.4 Ho is the fundamental

parameter
U'o 1eq. (106) eq. (106)
w’o (112) (112)
H'ô H'ô = 0 (119)
U'ô (126) (126) or (128)
Wo (133) (133) or (135)
Ho H"'11 0 = 0 (137)
rf"uo (139) (139) or (140)
w;" (142) (142) or (143)
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Appendix 2.

The run of the physical variables through 1 1 stellar models.

Model 1.
x = '/.no T~3-5.

Variations

V U W H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 — oo 0.000 0.000 — oo — oc
0.5 2.808 2.253 0.172 9.007 9.891 9.962 8.621 9.431
1.0 2.616 1.640 0.330 9.160 9.780 9.924 9.037 9.733
1.5 2.424 1.155 0.474 9.251 9.668 9.888 9.268 9.861
2.0 2.234 0.784 0.607 9.318 9.552 9.852 9.424 9.926
2.5 2.045 0.512 0.731 9.372 9.432 9.816 9.539 9.960
3.0 1.860 0.320 0.848 9.407 9.307 9.780 9.628 9.979
3.5 1.678 0.193 0.960 9.457 9.177 9.744 9.698 9.989
4.0 1.502 0.111 1.068 9.493 9.042 9.707 9.756 9.995
4.5 1.334 0.061 1.175 9.526 8.901 9.670 9.803 9.998
5.0 1.175 0.031 1.281 9.557 8.754 9.632 9.842 9.999
5.5 1.027 0.015 1.386 9.586 8.603 9.594 9.874 0.000
6.0 0.891 0.007 1.492 9.613 8.447 9.554 9.900 0.000
6.5 0.767 0.003 1.599 9.638 8.289 9.515 9.920 0.000
7.0 0.658 0.001 1.706 9.662 8.130 9.476 9.937 0.000
7.5 0.562 0.001 1.815 9.684 7.972 9.438 9.951 0.000
8.0 0.478 0.000 1.925 9.704 7.815 9.400 9.961 0.000
8.5 0.408 0.000 2.037 9.722 7.663 9.364 9.969 0.000
9.0 0.347 0.000 2.149 9.739 7.515 9.328 9.976 0.000
9.5 0.297 0.000 2.262 9.755 7.373 9.29 1 9.981 0.000

10.0 0.254 0.000 2.376 9.769 7.237 9.262 9.984 0.000
10.5 0.219 0.000 2.490 9.781 7.107 9.231 9.987 0.000
11.0 0.189 0.000 2.604 9.793 6.983 9.201 9.990 0.000
11.5 0.164 0.000 2.719 9.804 6.864 9.173 9.992 0.000
12.0 0.143 0.000 2.834 9.813 6.752 9.147 9.993 0.000
12.5 0.125 0.000 2.949 9.822 6.645 9.122 9.994 0.000
13.0 0.110 0.000 3.063 9.830 6.543 9.097 9.995 0.000
13.5 0.098 0.000 3.176 9.837 6.445 9.074 9.996 0.000
14.0 0.086 0.000 3.288 9.844 6.352 9.052 9.997 0.000
14.5 0.077 0.000 3.398 9.850 6.262 9.032 9.997 0.000
15.0 0.068 0.000 3.504 9.856 6.176 9.011 9.998 0.000

V A U d w d H
3 + 111 13 + 342
6 39 1 229

10 27 0 519
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Model 2.

X = Xo @0-75 y—3-5

V U W H log r/jR log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 — oc 0.000 0.000 — 00 — oo
0.5 2.800 2.263 0.160 8.876 9.891 9.964 8.591 9.414
1.0 2.600 1.652 0.306 9.032 9.778 9.929 9.012 9.722
1.5 2.399 1.164 0.438 9.126 9.662 9.894 9.247 9.855
2.0 2.199 0.787 0.559 9.195 9.542 9.860 9.407 9.922
2.5 2.000 0.509 0.671 9.251 9.415 9.825 9.526 9.959
3.0 1.803 0.313 0.776 9.300 9.282 9.790 9.619 9.979
3.5 1.609 0.183 0.875 9.344 9.140 9.754 9.693 9.989
4.0 1.420 0.101 0.971 9.384 8.989 9.716 9.754 9.995
4.5 1.238 0.052 1.064 9.422 8.827 9.678 9.805 9.998
5.0 1.066 0.024 1.157 9.458 8.655 9.637 9.847 9.999
5.5 0.904 0.010 1.249 9.493 8.472 9.595 9.881 0.000
6.0 0.757 0.004 1.342 9.527 8.279 9.552 9.909 0.000
6.5 0.625 0.002 1.436 9.559 8.078 9.507 9.931 0.000
7.0 0.510 0.000 1.532 9.590 7.871 9.462 9.948 0.000
7.5 0.413 0.000 1.629 9.618 7.662 9.416 9.962 0.000
8.0 0.333 0.000 1.727 9.645 7.456 9.371 9.972 0.000
8.5 0.268 0.000 1.827 9.670 7.254 9.328 9.979 0.000
9.0 0.216 0.000 1.929 9.692 7.060 9.286 9.984 0.000
9.5 0.175 0.000 2.031 9.712 6.875 9.246 9.988 0.000

10.0 0.143 0.000 2.134 9.730 6.700 9.209 9.991 0.000
10.5 0.117 0.000 2.238 9.746 6.535 9.174 9.993 0.000
11.0 0.097 0.000 2.342 9.760 6.380 9.141 9.995 0.000
11.5 0.081 0.000 2.446 9.773 6.233 9.110 9.996 0.000
12.0 0.068 0.000 2.551 9.785 6.095 9.080 9.997 0.000
12.5 0.057 0.000 2.655 9.796 5.965 9.052 9.997 0.000
13.0 0.049 0.000 2.760 9.805 5.841 9.026 9.998 0.000
13.5 0.042 0.000 2.864 9.814 5.724 9.001 9.998 0.000
14.0 0.036 0.000 2.968 9.822 5.614 8.978 9.999 0.000
14.5 0.031 0.000 3.070 9.830 5.508 8.955 9.999 0.000
15.0 0.027 0.000 J 3.172 9.836 5.407 8.934 9.999 0.000

Variations

V A U A W zf H
3 + 32 + 4 + 93
6 61 1 298

10 32 0 737
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Model 3.

z = zoe0-5 T 3,5.

V U IV H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 --- 00 0.000 0.000 --- 00 —- OC
0.5 2.792 2.275 0.146 8.647 9.890 9.967 8.553 9.394
1.0 2.582 1.668 0.279 8.805 9.776 9.934 8.979 9.709
1.5 2.372 1.176 0.399 8.901 9.656 9.902 9.219 9.847
2.0 2.161 0.792 0.508 8.974 9.530 9.869 9.384 9.918
2.5 1.950 0.506 0.607 9.034 9.396 9.835 9.508 9.957
3.0 1.739 0.304 0.698 9.087 9.250 9.801 9.605 9.978
3.5 1.530 0.170 0.784 9.135 9.092 9.765 9.685 9.990
4.0 1.325 0.087 0.866 9.182 8.919 9.726 9.751 9.995
4.5 1.124 0.040 0.945 9.227 8.727 9.686 9.806 9.998
5.0 0.932 0.016 1.023 9.272 8.512 9.641 9.853 9.999
5.5 0.751 0.005 1.101 9.318 8.271 9.592 9.891 0.000
6.0 0.586 0.001 1.180 9.365 8.002 9.539 9.922 0.000
6.5 0.442 0.000 1.260 9.412 7.705 9.481 9.947 0.000
7.0 0.322 0.000 1.342 9.460 7.386 9.419 9.965 0.000
7.5 0.230 0.000 1.427 9.505 7.056 9.356 9.977 0.000
8.0 0.162 0.000 1.515 9.547 6.730 9.294 9.985 0.000
8.5 0.115 0.000 1.604 9.585 6.418 9.235 9.990 0.000
9.0 0.082 0.000 1.695 9.618 6.128 9.180 9.994 0.000
9.5 0.060 0.000 1.787 9.647 5.860 9.130 9.996 0.000

10.0 0.044 0.000 1.879 9.672 5.614 9.084 9.997 0.000
10.5 0.034 0.000 1.972 9.694 5.389 9.041 9.998 0.000
11.0 0.026 0.000 2.065 9.714 5.182 9.002 9.998 0.000
11.5 0.020 0.000 2.159 9.731 4.990 8.966 9.999 0.000
12.0 0.016 0.000 2.253 9.746 4.813 8.933 9.999 0.000
12.5 0.013 0.000 2.348 9.759 4.648 8.902 9.999 0.000
13.0 0.010 0.000 2.444 9.771 4.493 8.873 0.000 0.000
13.5 0.008 0.0OO 2.542 9.782 4.349 8.846 0.000 0.000
14.0 0.007 0.000 2.642 9.792 4.213 8.820 0.000 0.000
14.5 0.006 0.000 2.745 9.801 4.085 8.796 0.000 0.000
15.0 0.005 0.000 2.853 9.809 3.965 8.773 0.000 0.000

Variations

V A U A IV A II
3 + 132 + 19 + 340
6 37 0 150

10 1 0 55
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Model 4.

x = xoe0-75 T-2-5.

V U W II log rfR log P)PC log TjTc log.Wr,'M log LrJL

0.0 3.000 3.000 0.000 — oc 0.000 0.000 - oo ■—- oc
0.5 2.817 2.242 0.185 9.049 9.892 9.959 8.638 9.446
1.0 2.632 1.628 0.352 9.200 9.783 9.919 9.051 9.741
1.5 2.447 1.146 0.503 9.290 9.673 9.881 9.278 9.866
2.0 2.262 0.780 0.641 9.354 9.560 9.844 9.431 9.928
2.5 2.078 0.513 0.769 9.406 9.445 9.808 9.543 9.961
3.0 1.898 0.325 0.888 9.450 9.325 9.772 9.630 9.979
3.5 1.721 0.198 1.003 9.488 9.202 9.736 9.699 9.989
4.0 1.550 0.116 1.114 9.522 9.073 9.700 9.755 9.994
4.5 1.386 0.066 1.223 9.553 8.941 9.663 9.801 9.997
5.0 1.231 0.036 1.^30 9.582 8.804 9.626 9.839 9.999
5.5 1.085 0.019 1.437 9.609 8.663 9.589 9.870 9.999
6.0 0.951 0.010 1.545 9.634 8.519 9.552 9.895 0.000
6.5 0.828 0.005 1.654 9.657 8.373 9.514 9.916 0.000
7.0 0.718 0.002 1.763 9.679 8.226 9.477 9.933 0.000
7.5 0.621 0.001 1.874 9.699 8.080 9.441 9.946 0.000
8.0 0.536 0.001 1.986 9.718 7.936 9.405 9.957 0.000
8.5 0.462 0.000 2.099 9.735 7.795 9.370 9.966 0.000
9.0 0.399 0.000 2.213 9.750 7.658 9.336 9.972 0.000
9.5 0.345 0.000 2.328 9.765 7.526 9.304 9.978 0.000

10.0 0.299 0.000 2.444 9.778 7.399 9.272 9.982 0.000
10.5 0.260 0.000 2.560 9.790 7.277 9.243 9.985 0.000
11.0 0.227 0.000 2.677 9.800 7.160 9.214 9.988 0.000
11.5 0.199 0.000 2.795 9.810 7.049 9.187 9.990 0.000
12.0 0.175 0.000 2.912 9.819 6.942 9.161 9.992 0.000
12.5 0.154 0.000 3.030 9.828 6.841 9.136 9.993 0.000
13.0 0.137 0.000 3.148 9.835 6.744 9.113 9.994 0.000
13.5 0.122 0.000 3.265 9.842 6.651 9.090 9.995 0.000
14.0 0.108 0.000 3.381 9.849 6.562 9.069 9.996 0.000
14.5 0.097 0.000 3.497 9.855 6.476 9.048 9.996 0.000
15.0 0.087 0.000 3.610 9.860 6.394 9.019 9.997 0.000

Variations

V A U J W A H
3 + 91 + 9 + 260
6 18 0 83

10 23 0 301
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Model 5.

x = xo @°-5 T—2 5.

V U W II log r/7? log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 — oo 0.000 0.000 — oo — oc
0.5 2.808 2.254 0.171 8.911 9.891 9.962 8.605 9.426
1.0 2.613 1.643 0.323 9.065 9.780 9.925 9.023 9.729
1.5 2.418 1.158 0.460 9.157 9.667 9.889 9.255 9.858
2.0 2.222 0.785 0.584 9.225 9.549 9.854 9.413 9.924
2.5 2.026 0.511 0.698 9.280 9.426 9.818 9.530 9.960
3.0 1.833 0.317 0.803 9.327 9.297 9.783 9.620 9.979
3.5 1.642 0.188 0.903 9.369 9.160 9.747 9.694 9.989
4.0 1.456 0.105 0.999 9.407 9.016 9.710 9.753 9.995
4.5 1.277 0.055 1.092 9.444 8.862 9.672 9.803 9.998
5.0 1.106 0.026 1.184 9.478 8.698 9.633 9.844 9.999
5.5 0.946 0.012 1.276 9.511 8.525 9.593 9.878 0.000
6.0 0.799 0.005 1.368 9.542 8.344 9.551 9.905 0.000
6.5 0.667 0.002 1.462 9.573 8.154 9.508 9.928 0.000
7.0 0.550 0.001 1.557 9.602 7.960 9.464 9.945 0.000
7.5 0.451 0.000 1.654 9.629 7.763 9.421 9.959 0.000
8.0 0.368 0.000 1.752 9.654 7.568 9.378 9.969 0.000
8.5 0.299 0.000 1.852 9.677 7.376 9.336 9.977 0.000
9.0 0.244 0.000 1.953 9.698 7.191 9.296 9.982 0.000
9.5 0.199 0.000 2.056 9.717 7.014 9.257 9.987 0.000

10.0 0.164 0.000 2.160 9.735 6.845 9.221 9.990 0.000
10.5 0.136 0.000 2.264 9.750 6.686 9.186 9.992 0.000
11.0 0.113 0.000 2.369 9.764 6.535 9.154 9.994 0.000
11.5 0.095 0.000 2.474 9.777 6.393 9.123 9.995 0.000
12.0 0.080 0.000 2.580 9.788 6.258 9.094 9.996 0.000
12.5 0.068 0.000 2.687 9.799 6.131 9.067 9.997 0.000
13.0 0.058 0.000 2.793 9.808 6.010 9.041 9.997 0.000
13.5 0.050 0.000 2.900 9.817 5.896 9.016 9.998 0.000
14.0 0.043 0.000 3.008 9.825 5.788 8.993 9.998 0.000
14.5 0.038 0.000 3.116 9.832 5.684 8.971 9.999 0.000
15.0 0.033 0.000 3.225 9.839 5.586 8.950 9.999 0.000

Variations

V Zf u A VV A II
3 + 50 + 6 + 126
6 30 0 115

10 22 0 383
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Model 6.
X = Zop0-25 T-2-5.

43

V / W H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 oc 0.000 0.000 — X — X

0.5 2.797 2.268 0.154 8.647 9.891 9.965 8.562 9.403
1.0 2.592 1.660 0.292 8.804 9.778 9.931 8.986 9.714
1.5 2.385 1.170 0.414 8.899 9.660 9.898 9.224 9.850
2.0 2.176 0.790 0.523 8.970 9.536 9.864 9.387 9.920
2.5 1.967 0.507 0.621 9.029 9.404 9.830 9.509 9.958
3.0 1.758 0.307 0.711 9.081 9.262 9.796 9.605 9.978
3.5 1.550 0.173 0.795 9.129 9.107 9.760 9.684 9.990
4.0 1.345 0.090 0.874 9.174 8.938 9.722 9.749 9.995
4.5 1.144 0.042 0.950 9.218 8.750 9.682 9.804 9.998
5.0 0.951 0.017 1.025 9.262 8.539 9.638 9.851 9.999
5.5 0.768 0.006 1.099 9.307 8.303 9.590 9.889 0.000
6.0 0.600 0.002 1.174 9.354 8.038 9.538 9.921 0.000
6.5 0.452 0.000 1.251 9.401 7.743 9.481 9.946 0.000
7.0 0.329 0.000 1.331 9.448 7.423 9.419 9.964 0.000
7.5 0.233 0.000 1.413 9.494 7.090 9.356 9.977 0.000
8.0 0.163 0.000 1.498 9.537 6.757 9.294 9.985 0.000
8.5 0.114 0.000 1.586 9.576 6.437 9.234 9.991 0.000
9.0 0.081 0.000 1.675 9.610 6.138 9.178 9.994 0.000
9.5 0.058 0.000 1.765 9.640 5.863 9.127 9.996 0.000

10.0 0.043 0.000 1.856 9.666 5.610 9.080 9.997 0.000
10.5 0.032 0.000 1.948 9.688 5.379 9.037 9.998 0.000
11.0 0.024 0.000 2.040 9.708 5.166 8.998 9.999 0.000
11.5 0.019 0.000 2.132 9.726 4.970 8.961 9.999 0.000
12.0 0.015 0.000 2.224 9.741 4.788 8.927 9.999 0.000
12.5 0.012 0.000 2.316 9.755 4.619 8.896 0.000 0.000
13.0 0.010 0.000 2.409 9.767 4.461 8.866 0.000 0.000
13.5 0.008 0.000 2.502 9.778 4.312 8.839 0.000 0.000
14.0 0.006 0.000 2.594 9.789 4.173 8.813 0.000 0.000
14.5 0.005 0.000 2.687 9.798 4.041 8.789 0.000 0.000
15.0 0.004 0.000 2.780 9.806 3.916 8.766 0.000 0.000

Variations

V d U d w d II
3 + 78 + 12 + 178
6 19 0 66

10 11 0 282
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Model 7.

x = Xopo.5 7-0.9.

V U ir H log r/B log P/Pc log TjTc logMr/M log Lr!L

0.0 3.000 3.000 0.000 — oc 0.000 0.000 —- oo — oc
0.5 2.824 2.231 0.200 9.191 9.892 9.957 8.686 9.475
1.0 2.655 1.608 0.400 9.338 9.786 9.914 9.093 9.762
1.5 2.494 1.126 0.600 9.423 9.681 9.872 9.312 9.879

2.0 2.338 0.769 0.769 9.483 9.578 9.832 9.455 9.935
2.5 2.180 0.514 0.918 9.529 9.475 9.793 9.560 9.964
3.0 2.022 0.336 1.057 9.567 9.371 9.755 9.639 9.980
3.5 1.867 0.215 1.190 9.599 9.266 9.719 9.702 9.989
4.0 1.717 0.135 1.318 9.627 9.160 9.684 9.753 9.994
4.5 1.573 0.083 1.444 9.652 9.052 9.649 9.795 9.997
5.0 1.435 0.050 1.569 9.675 8.944 9.614 9.829 9.998
5.5 1.306 0.030 1.693 9.696 8.836 9.580 9.857 9.999
6.0 1.185 0.018 1.818 9.715 8.727 9.547 9.881 0.000
6.5 1.073 0.010 1.943 9.732 8.619 9.515 9.900 0.000
7.0 0.970 0.006 2.068 9.748 8.512 9.483 9.916 0.000
7.5 0.876 0.004 2.195 9.763 8.406 9.452 9.930 0.000
8.0 0.790 0.002 2.323 9.776 8.303 9.422 9.941 0.000
8.5 0.714 0.001 2.452 9.788 8.201 9.392 9.950 0.000
9.0 0.645 0.001 2.582 9.800 8.102 9.364 9.958 0.000
9.5 0.583 0.000 2.712 9.810 8.006 9.336 9.964 0.000

10.0 0.528 0.000 2.843 9.820 7.913 9.310 9.970 0.000
10.5 0.479 0.000 2.975 9.828 7.823 9.284 9.974 0.000
11.0 0.435 0.000 3.107 9.836 7.736 9.260 9.978 0.000
11.5 0.396 0.000 3.239 9.844 7.652 9.236 9.981 0.000
12.0 0.361 0.000 3.372 9.851 7.572 9.213 9.983 0.000
12.5 0.330 0.000 3.504 9.857 7.494 9.191 9.986 0.000
13.0 0.302 0.000 3.636 9.863 7.418 9.170 9.988 0.000
13.5 0.277 0.000 3.767 9.868 7.346 9.150 9.989 0.000
14.0 0.255 0.000 3.897 9.873 7.276 9.130 9.990 0.000
14.5 0.234 0.000 4.026 9.878 7.208 9.112 9.992 0.000
15.0 0.216 0.000 4.153 9.883 7.142 9.093 9.993 0.000

Variations

V d u A ir A H
6 + 18 0 + 108
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Model 8.

x = xop0-25 r-°-9.

V U W H log r/R log P/Pc log T/Tc \oëMrIM log Lr/L

0.0 3.000 3.000 0.000 ---  OC 0.000 0.000 --- OO ---  QO
0.5 2.824 2.231 0.200 9.089 9.892 9.957 8.661 9.467

1.0 2.655 1.609 0.394 9.237 9.786 9.914 9.068 9.754
1.5 2.483 1.131 0.554 9.323 9.679 9.874 9.289 9.872
2.0 2.308 0.774 0.697 9.385 9.572 9.835 9.438 9.931
2.5 2.132 0.514 0.827 9.434 9.463 9.798 9.546 9.962
3.0 1.958 0.331 0.947 9.475 9.350 9.762 9.630 9.980
3.5 1.787 0.206 1.060 9.511 9.234 9.726 9.697 9.989
4.0 1.620 0.124 1.168 9.542 9.115 9.690 9.751 9.994
4.5 1.459 0.073 1.275 9.572 8.992 9.655 9.796 9.997
5.0 1.305 0.041 1.380 9.598 8.865 9.619 9.833 9.998
5.5 1.161 0.023 1.484 9.623 8.734 9.584 9.864 9.999
6.0 1.027 0.012 1.589 9.646 8.601 9.548 9.889 0.000
6.5 0.903 0.006 1.695 9.668 8.466 9.512 9.910 0.000
7.0 0.791 0.003 1.802 9.688 8.330 9.477 9.927 0.000
7.5 0.691 0.002 1.910 9.707 8.194 9.442 9.941 0.000
8.0 0.602 0.001 2.019 9.724 8.059 9.408 9.952 0.000
8.5 0.525 0.000 2.131 9.740 7.926 9.374 9.961 0.000
9.0 0.457 0.000 2.243 9.755 7.797 9.342 9.968 0.000
9.5 0.399 0.000 2.357 9.769 7.671 9.311 9.974 0.000

10.0 0.348 0.000 2.471 9.781 7.550 9.281 9.979 0.000
10.5 0.305 0.000 2.587 9.793 7.433 9.252 9.982 0.000
11.0 0.268 0.000 2.703 9.803 7.320 9.224 9.986 0.000
11.5 0.236 0.000 2.820 9.813 7.212 9.198 9.988 0.000
12.0 0.209 0.000 2.936 9.822 7.109 9.172 9.990 0.000
12.5 0.185 0.000 3.054 9.830 7.010 9.148 9.992 0.000
13.0 0.165 0.000 3.171 9.837 6.915 9.125 9.993 0.000
13.5 0.147 0.000 3.288 9.844 6.824 9.103 9.994 0.000
14.0 0.132 0.000 3.405 9.850 6.737 9.081 9.995 0.000
14.5 0.118 0.000 3.522 9.856 6.653 9.061 9.996 0.000
15.0 0.107 0.000 3.638 9.862 6.572 9.041 9.996 0.000

Variations

V A U A W A H
5 + 25 + 2 + 81

10 7 0 106



46 Nr. 16

Model 9.

x = x0 T-°-9.

V U W H log r/R log P/Pc log T/Tc logMr/M log Lr/L

0.0 3.000 3.000 0.000 ----  00 0.000 0.000 —• OC — x>
0.5 2.820 2.237 0.189 8.892 9.892 9.957 8.618 9.444
1.0 2.635 1.625 0.351 9.042 9.784 9.918 9.030 9.738
1.5 2.445 1.146 0.491 9.132 9.673 9.880 9.258 9.863
2.0 2.254 0.780 0.614 9.197 9.559 9.844 9.412 9.926
2.5 2.060 0.512 0.723 9.250 9.440 9.809 9.527 9.960
3.0 1.867 0.321 0.822 9.296 9.315 9.773 9.616 9.979
3.5 1.676 0.192 0.913 9.336 9.183 9.738 9.689 9.989
4.0 1.488 0.109 1.000 9.374 9.042 9.702 9.748 9.994
4.5 1.305 0.058 1.084 9.410 8.890 9.665 9.798 9.997
5.0 1.129 0.029 1.166 9.444 8.729 9.626 9.840 9.999
5.5 0.963 0.014 1.248 9.477 8.555 9.586 9.874 0.000
6.0 0.810 0.006 1.330 9.509 8.370 9.545 9.903 0.000
6.5 0.671 0.002 1.414 9.540 8.175 9.502 9.926 0.000
7.0 0.548 0.001 1.500 9.570 7.971 9.458 9.944 0.000
7.5 0.443 0.000 1.588 9.599 7.761 9.413 9.958 0.000
8.0 0.356 0.000 1.678 9.626 7.551 9.369 9.969 0.000
8.5 0.285 0.000 1.771 9.652 7.343 9.325 9.977 0.000
9.0 0.228 0.000 1.866 9.675 7.140 9.283 9.983 0.000
9.5 0.183 0.000 1.962 9.696 6.946 9.243 9.988 0.000

10.0 0.148 0.000 2.058 9.715 6.761 9.205 9.991 0.000
10.5 0.120 0.000 2.156 9.732 6.586 9.169 9.993 0.000
11.0 0.098 0.000 2.255 9.747 6.421 9.135 9.995 0.000
11.5 0.081 0.000 2.354 9.761 6.266 9.103 9.996 0.000
12.0 0.067 0.000 2.453 9.774 6.118 9.073 9.997 0.000
12.5 0.057 0.000 2.552 9.785 5.980 9.044 9.997 0.000
13.0 0.048 0.000 2.650 9.795 5.848 9.018 9.998 0.000
13.5 0.040 0.000 2.748 9.805 5.724 8.992 9.998 0.000
14.0 0.034 0.000 2.845 9.813 5.605 8.968 9.999 0.000
14.5 0.030 0.000 2.942 9.821 5.493 8.945 9.999 0.000
15.0 0.025 0.000 3.036 9.828 5.385 8.923 9.999 0.000

Variations

V d u Zl IV zl H
3 + 53 + 5 + 112
6 19 1 59
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Model 10.

V U W H log r/R log P/Pc log T/Tc log Mr/M log LrIL

0.0 3.000 3.000 0.000 — oc 0.000 0.000 — oc ■— oc
0.5 2.824 2.231 0.200 9.232 9.892 9.957 8.699 9.478
1.0 2.655 1.608 0.400 9.380 9.786 9.914 9.105 9.765
1.5 2.494 1.126 0.600 9.465 9.681 9.872 9.324 9.881
2.0 2.342 0.768 0.800 9.524 9.578 9.831 9.467 9.937
2.5 2.198 0.514 1.000 9.569 9.478 9.791 9.569 9.966

3.0 2.059 0.338 1.156 9.605 9.380 9.753 9.645 9.981
3.5 1.919 0.220 1.296 9.635 9.282 9.716 9.705 9.989
4.0 1.782 0.141 1.432 9.661 9.184 9.680 9.754 9.994
4.5 1.648 0.089 1.565 9.684 9.086 9.645 9.793 9.997
5.0 1.520 0.056 1.697 9.705 8.988 9.612 9.826 9.998
5.5 1.398 0.035 1.827 9.724 8.890 9.579 9.853 9.999
6.0 1.284 0.022 1.958 9.740 8.793 9.547 9.876 0.000
6.5 1.176 0.013 2.090 9.756 8.697 9.515 9.895 0.000
7.0 1.077 0.008 2.222 9.770 8.602 9.485 9.910 0.000
7.5 0.985 0.005 2.354 9.783 8.508 9.455 9.924 0.000
8.0 0.901 0.003 2.487 9.795 8.416 9.427 9.935 0.000
8.5 0.824 0.002 2.621 9.806 8.326 9.399 9.944 0.000
9.0 0.754 0.001 2.756 9.816 8.239 9.372 9.952 0.000
9.5 0.691 0.001 2.890 9.825 8.154 9.346 9.959 0.000

10.0 0.633 0.000 3.026 9.833 8.071 9.321 9.964 0.000
10.5 0.581 0.000 3.162 9.841 7.990 9.296 9.969 0.000
11.0 0.534 0.000 3.297 9.848 7.912 9.273 9.973 0.000
11.5 0.491 0.000 3.432 9.855 7.837 9.250 9.977 0.000
12.0 0.452 0.000 3.567 9.861 7.764 9.228 9.980 0.000
12.5 0.418 0.000 3.700 9.867 7.693 9.207 9.892 0.000
13.0 0.386 0.000 3.832 9.872 7.625 9.187 9.984 0.000
13.5 0.357 0.000 3.962 9.877 7.558 9.168 9.986 0.000
14.0 0.330 0.000 4.091 9.882 7.494 9.149 9.988 0.000
14.5 0.307 0.000 4.216 9.886 7.431 9.131 9.989 0.000
15.0 0.285 0.000 4.339 9.891 7.371 9.113 9.990 0.000
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Model 11.

x = x0.

V U W II log rfR log P/Pc log 77 Tc logMr/M log Lr)L

0.0 3.000 3.000 0.000 ---- OC 0.000 0.000 — 00 —- cc
0.5 2.824 2.231 0.200 9.134 9.892 9.957 8.678 9.474
1.0 2.655 1.608 0.400 9.281 9.786 9.914 9.084 9.761
1.5 2. 19 1 1.126 0.600 9.366 9.681 9.872 9.303 9.878

2.0 2.336 0.770 0.759 9.426 9.577 9.832 9.417 9.934
2.5 2.174 0.514 0.894 9.472 9.473 9.793 9.552 9.964
3.0 2.010 0.336 1.018 9.511 9.367 9.756 9.633 9.980
3.5 1.847 0.213 1.133 9.544 9.259 9.720 9.698 9.989
4.0 1.687 0.132 1.244 9.574 9.148 9.685 9.750 9.994
4.5 1.532 0.080 1.351 9.601 9.034 9.650 9.793 9.997
5.0 1.384 0.047 1.457 9.625 8.918 9.616 9.829 9.998
5.5 1.243 0.027 1.563 9.648 8.798 9.581 9.859 9.999
6.0 1.111 0.015 1.669 9.669 8.677 9.547 9.884 0.000
6.5 0.989 0.008 1.775 9.689 8.555 9.514 9.904 0.000
7.0 0.877 0.005 1.883 9.707 8.432 9.480 9.921 0.000
7.5 0.776 0.003 1.992 9.724 8.308 9.447 9.935 0.000
8.0 0.685 0.002 2.103 9.740 8.186 9.415 9.947 0.000
8.5 0.604 0.001 2.216 9.754 8.066 9.383 9.956 0.000
9.0 0.533 0.000 2.330 9.768 7.948 9.353 9.964 0.000
9.5 0.470 0.000 2.445 9.780 7.833 9.323 9.970 0.000

10.0 0.416 0.000 2.561 9.792 7.722 9.294 9.975 0.000
10.5 0.368 0.000 2.678 9.802 7.614 9.267 9.979 0.000
11.0 0.327 0.000 2.797 9.812 7.509 9.240 9.983 0.000
11.5 0.291 0.000 2.916 9.821 7.409 9.215 9.985 0.000
12.0 0.259 0.000 3.035 9.829 7.313 9.190 9.988 0.000
12.5 0.232 0.000 3.155 9.836 7.220 9.167 9.990 0.000
13.0 0.208 0.000 3.275 9.844 7.131 9.144 9.991 0.000
13.5 0.187 0.000 3.396 9.850 7.045 9.123 9.992 0.000
14.0 0.169 0.000 3.516 9.856 6.963 9.102 9.993 0.000
14.5 0.153 0.000 3.636 9.862 6.883 9.082 9.994 0.000
15.0 0.139 0.000 3.757 9.867 6.807 9.063 9.995 0.000

v

5

Variations

d U A VV
4-14 +1

A II
+ 44
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The paper deals with the experimental problems connected with measure­
ments of the conversion electrons produced by Coulomb excitation of the heavier 
elements. It contains the results of a series of measurements on elements with 
the atomic numbers 25, 26, 47, 60, 62 to 75, and 77 to 79. Reduced transition 
probabilities are computed from the data and are compared with the results 
derived from lifetime measurements. By means of the unified model, nuclear 
moments are calculated from the measured excitation energies and transition 
probabilities. The values obtained are compared with the theory as well as 
with other experimental evidence and in general the agreement is found to 
be satisfactory.

I. Introduction.
he excitation of nuclei by the electric field of impinging heavy

A particles provides a powerful method for studying the collect­
ive nuclear energy spectra. In the two years that have passed 
since such Coulomb excitation processes were first investigated, 
one has obtained extensive information*  which has yielded many 
tests of the theoretical predictions based on the unified nuclear 
model (Bo 1).

According to this model, the collective excitations have a 
particularly simple character for nuclei possessing large deformat­
ions, as encountered in regions far removed from closed shell 
configurations. Such strongly deformed nuclei are expected to 
exhibit excitation spectra of simple rotational type, characterized 
by numerous regularities in energies and transition probabilities. 
The rotational spectra also have especially small excitation ener­
gies and large electric quadrupole matrix elements, making them 
highly suitable for Coulomb excitation studies.

The region of the periodic table, which offers the best pos­
sibility for a systematic study of rotational states by means of 
Coulomb excitation, is the comparatively large interval between 
the nuclei having 82 neutrons and mass numbers around A — 
140, and the doubly closed shell configuration of 82Pb208. In the 
present paper, the results of some Coulomb excitation measure­
ments of nuclei in this region are reported.

In the investigation of the radiation from the Coulomb excited
* For a complete list of experimental investigations employing the Coulomb 

excitation process, the reader is referred to a forthcoming review article (Al 1). 
We may here especially point to the extensive investigations by N. P. Heyden- 
burg and G. M. Temmer (He 1); C. L. McClelland, H. Mark, and C. Good­
man (Me 1); and P. H. Stelson and F. K. McGowan (St 1). 

1*
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nuclei we have studied the internal conversion electrons rather 
than the emitted y-rays. This method oilers the following ad­
vantages :

a) The relatively high resolution obtainable with ^-spectro­
meters is useful, in particular when targets of separated isotopes 
are difficult to obtain, as is the case with the rare earth elements.

b) The presence of lighter elements in the target is com­
paratively harmless, as a consequence of their small conversion 
coefficients. This was important in our work since the rare earths 
were only available in very small quantities and in the form of 
oxides, which give rise to a y-ray background under proton 
bombardment. This background is considerably smaller when 
a-particles are employed as projectiles which, however, in most 
instances requires an acceleration voltage of more than the 2 
MV at our disposal.

c) The relative intensity of the electrons from the various 
atomic shells yields information about the multipolarity of the 
transitions.

On the other hand, the use of the thin targets, which are prefer­
able for the lower electron energies, gives rise to additional uncer­
tainties in the measured cross sections. This is particularly true 
because of the difficulty of producing stable and homogeneous 
targets when only very small quantities of the materials are 
available.

In the present investigation, it was aimed at obtaining a 
preliminary survey of rotational excitations in the region of the 
elements considered and, in addition, at estimating nuclear 
moments on the basis of the observed cross sections. In partic­
ular, the trends of the nuclear quadrupole deformations and their 
relation to the moments of inertia appear to be of interest for 
current theoretical developments.

In Chapter II, the theory of rotational states and of the Coulomb 
excitation process is summarized, while the experimental pro­
blems are dealt with in Chapter III. The data obtained are 
tabulated and commented on in Chapter IV, whereas the re­
sults are discussed in Chapter V. The theory of a background 
radiation, important for the measurements, is outlined in the 
Appendices I and II.
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II. Summary of Theory.
A. Rotational States.

In this section, we give a brief summary of the theory of 
nuclear rotational states, as developed by Bonn and Mottelson 
(Bo 1), and present the formulae which are employed in the 
present work.

Rotational spectra are associated with nuclei possessing large 
deformations. For such nuclei one may distinguish between 
intrinsic and rotational excitations. The former involve a change 
of configuration of individual particles or vibrations of the 
nuclear shape, the latter correspond to a collective rotational 
motion of the nucleus with preservation of the intrinsic structure.

Energy Spectra and Effective Moments of Inertia.

If the nuclear shape possesses axial symmetry, as appears 
to be the case for all strongly deformed nuclei, the component 
of the total angular momentum along the symmetry axis is a 
constant of the motion. The corresponding quantum number 
7v’ is the same for all the members of a rotational band. For 
Æ # 1/2, the rotational excitation energy A Er is given by

AEr = ^[/(/+ 1) -K(li+ 1)]. (1)

where I is the total nuclear angular momentum and 3 the ef­
fective moment of inertia.

Even-even nuclei have K = 0 in their ground state and the 
corresponding rotational band contains the states

I — 0, 2, 4, ... even parity. (2 a)

For odd-A nuclei, or odd-odd nuclei, the spin sequence is

I — K, /< + 1, Ji + 2, ... all same parity, (2 b) 

and K thus equals the ground state spin Zo­
in the special case of odd-A nuclei with K = 1/2, the spin 

of the last odd particle is partially decoupled from the rotational 
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motion. The rotational excitation energy then contains an ad­
ditional term and is given by

/j2
AEa = zl£, + n.~.[l+(_!)/ +i/2(/+1/2)], (3)

2

where the decoupling parameter ‘a’ is related to the wave function 
for the last odd nucleon by

a = — 2? (— 1) ; + 1/2 O' + !/2) • I ej I2. 
j

(4)

In this expression, | Cj |2 represents the probability that the part­
icle possesses a total angular momentum j. The decoupling 
parameter may be positive or negative, and for | a | > 1 formula 
(3) implies level inversions. Thus, a nucleus with Io = 3/2 could, 
in principle, have K = l/‘2 and an anomalous rotational spectrum.

For rotational spectra of the simple type (1), the ratio of the 
energies of the second and first excited states depends only on 
Io and is, for odd-A nuclei, given by

/I E2 2 Io + 3
zl Ei Io + 1

2.40 Io = 3/2

2.29 Io = 5/2

2.22 Io = 7/2
(5)

The separation between rotational and intrinsic motion de­
pends on the smallness of the rotational frequencies as compared 
with the frequencies of the intrinsic motion. The finiteness of 
the rotational frequencies thus gives rise to small deviations 
from the pure rotational spectra. For the strongly deformed 
nuclei, these deviations from (1) are expected not to exceed one 
per cent for the lowest rotational states, except in special cases 
where the rotational motion may be perturbed by a low-lying 
intrinsic excitation (cf. Ke 1).

The rotational motion of the nucleus is essentially different 
from that of a rigid body, and may be pictured as a wave travelling 
around the nuclear surface. The corresponding moment of inertia 
is appreciably smaller than for rigid rotation and is related to 
the magnitude of the nuclear deformation. A simple model, 
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which has been considered, describes the rotational motion in 
terms of an irrotational llow. For an ellipsoidal nucleus of con­
stant density, one then obtains

Sirrot = !a2Mo
5 (6)

where AR is the difference between the major and the minor 
semi-axis, while A2 is the nuclear mass number, and Mo the 
nucleonic mass.

In a recent more detailed analysis (Bo 2), it has been found, 
however, that the nuclear shell structure implies deviations from 
the model of irrotational How with moments of inertia larger than 
(6) in magnitude. Empirical data 011 the relationship between 3 
and AR may yield information on the ‘purity’ of the individual 
particle motion in the nucleus.

Electric Quadrupole Moments and Transition Probabilities.

The reduced transition probabilities Be 2 for electric quad­
rupole excitation*  are given by the intrinsic quadrupole moment 
Qo through the expressions

- -- e2 Qo2-------------------
16% (/o + 1 ) (To + 2)

Be2 = — e2 Qo2---------------------
8 % (2 Io + 3) (Io + 2)

Io Io + 1 >

Io Io A 2 .

(7)

(8)

The spectroscopically measured quadrupole
related to Qo by

Io+ 1
2/0—I
2 /o + 3 Qo.

moment Q is

[(9)

These formulae also hold in the case Io = 1/2.
By comparison with (2), it is seen that such transitions only 

reach the first excited rotational state in the even-even nuclei, 
and the first and second in the odd-A nuclei.

* In the present paper, the letter B always denotes the reduced transition 
probability corresponding to the excitation, and not to the decay.
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For a uniformly charged nucleus of spheroidal shape, one has

(10)

where Z2e is the charge and Ro the average radius of the nucleus. 
By eliminating AR by means of (6) and putting Ro = A21(3r0, one 
obtains *

4 Z22 h2-ro2 ~ . Z22
5 A21/3 ’ Mo ~ ÄZ1/3 keV - 10~48 cm4, (H)

which provides a convenient relation for testing the irrotational 
estimate for 3 •

Magnetic Dipole Moments and Transition Probabilities.

The nuclear magnetic moment and the Ml transition prob­
abilities between successive rotational states can be expressed 
in terms of the two gyromagnetic ratios gx and gR, of which 
the first is associated with the intrinsic angular momentum K 
and the second with the rotational motion.

The ground state magnetic moment is given by

/o2 /o
R = - , ■ MK + -—— -gR n. m., (12)

Jo + 1 Jo + 1

holding for K 1/2. For K = 1/2, the moment contains an 
additional term, similar to that in (3). (Cf., e. g., Ni 1).

For an Ml transition from a state I to a state 1 4~ 1 in a 
rotational band with K = Io 1/2, the reduced transition prob­
ability is given by

3
Rmi — 4 n

• (<M — gR)2 ■
Io2 (/ + 1 - /o) (Z + 1 + Io) 

(Z+1)(2Z+1)
(13)

Thus, from measurements of p and Rm\, one may determine 
the quantities gx and gR. Il is of interest to compare gR with 
the value

* Here and in the following, we have employed the value r0 = 1.20 -IO“13 cm.
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(9r)uniform
Z2
Ä2’ (14)

corresponding to a rotational motion of uniformly charged 
nuclear matter.

For odd-A nuclei, the radiative decay of rotational excitations 
can be of the mixed Ml + E2 type. The mixing ratio is denoted 
by 5; its square, which gives the ratio of the number of E2 gamma 
quanta to the number of M1 quanta emitted in the decay I + 1 -> I, 
is, for K 1/2, given by

201(7 + 2) (JK — Qr
(15)

With the usual convention (cf., e. g., Bi 1), (gx— Qr) should 
be given the same sign as the ratio Qo'.ô, but if this sign is not 
known, one can only determine | gx — gR |.

If one denotes the transitions from the second to the first 
rotational state by the subscript 21, and those from the first to 
the ground state by 1, it follows from (15) that

dEiW/o + 1) (Zo + 3)
JE21' _ lo (lo + 2)

1.10 Io == 3/2
1.04 Io == 5/2

1.02 /o == 7/2
(16)

if one inserts the theoretical energy ratios given by (5).
The mixing ratios can either be determined directly from the 

K.L ratios or from angular correlation measurements. In ad­
dition, they can be obtained from the branching ratio of the 
cascade to cross-over decay of the second rotational state, if 
that ratio is known for the E2 part of the transition. For rotational
states, one has for the quadrupole 
TE2{y} the ratio

/-transition probabilities

(2/o + 1) (/o + 3)
/o2(2/o + 3) ’ 7

where subscript 2 denotes the transition from the second rotational 
state to the ground state. This formula is valid also for Io = 1/2.

For a rotational spectrum (1), one finds, by means of (5),
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(18)

B. Internai Conversion.

In order to determine the transition energies from the energies 
of the electrons ejected from the K, L or M shells of the target 
atoms by the process of internal conversion, one will of course 
have to know the corresponding binding energies. We have used 
the values compiled in the table published by Hill et al. (Hi 1). 
For the L electrons, most weight has been given to the value 
for the Li sub-shell in the case of M1 transitions, and to the 
other two sub-shells for E2 transitions. The comparison of the 
values for the transition energy found from the different con­
version lines provides a check on the reliability of the energy 
determinations and shows also whether the transition has been 
assigned to the right element.

In order to find the total number of nuclei excited in a given 
state from yield measurements on a conversion line, one 
will have to know the corresponding decay fraction i. e.
the fraction of the excitations which de-excite through that par­
ticular mode of decay, represented by the principal quantum 
number ‘n for the atomic shell. If the conversion coefficients 

ix {L}, oc{M}, etc. are known, one can calculate e from

-------  ^{n} + ô^E2{n} (i9) 
(1 + y_XMl {v}) + (1 + ^aE2{4)

V V

where ß is the branching fraction, i. e. the fraction of the excita­
tions which decays to the final state in question. For the con­
version coefficients, we have used the values represented by the 
curves in Figs. 1 and 2. They are based mainly on the tables of 
Rose et al. (Ro 1).*  In most instances, the conversion coef­
ficients are so large that the K and L conversion lines together

* We are very grateful to Professor Rose for sending us his results prior to 
publication.
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TRANSITION ENERGY hv IN KEV

Fig. 1. Internal conversion coefficients for the K shell.* The curves are mainly 
based on the theoretical results obtained by Rose (Ro 1).

contain the majority of all the decays, which means that + 
£ approaches the value ß, almost independent of the conversion 
coefficients and of ô2. It is, therefore, important to determine 
the yield of both these lines or, e. g., the yield of the L line and 
the K\L ratio.

For the transitions in which a spin change Al = 2 is involved, 
one knows of course that ô2 — oc and, since the E2 transitions 
ordinarily have conversion coefficients corresponding to K:L < 1, 
one can in general obtain a good transition yield determination 
from the theoretical K:L ratio and measurements on the L line. 
For the case Al = 1, the value of <52 is not known a priori, and 
one will have to measure the K:L ratio also. Thereby one obtains, 
however, an explicit value of ô2, since one has

* Note added in proof. It seems that the finite size of the nucleus gives 
rise to a significant correction to the M1 coefficients which, for Z2 ~ 70, should 
be about 25 per cent smaller than given by Fig. 1 (cf. Al 1). The effects on 
the K-.L ratios and the E2 coefficients are considerably smaller.

Ô2 =
<xmi{k} (L:K)obs—(L:K)Mi

' aB2(K} (L:Æ)E2-(L:Æ)obs’
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M1

Z2/hv IN (KEV)'’

E2

Z//hv IN (KEV)-'

Fig. 2. Semi-empirical ratios for the internal conversion coefficients for the various 
shells. In the case of the L’.K ratios the values are based mainly on the work 
of Rose (Ro 1)*. For the Ml radiation, it should be mentioned that the 500 keV 
curve is falling in between the 100 keV and 300 keV curves. For the E2 radiation, 
the Z2 = 65 curve is based mainly on empirical data. In the case of the (M N):L 
ratios we have taken the values from the paper of H. de Waard (Wa 1), with the 
exception that, for the Ml radiation, we have employed the full drawn curve, 

which seems as reasonable as the dashed curve given by de Waard.

where L.K stands for the corresponding ratio of the conversion 
coefficients. In this way, one is able to determine the magnetic 
matrix element in terms of the quadrupole matrix element. In 
order to obtain absolute values for these matrix elements from the 
measured cross sections, the branching fraction ß must also be 
known (cf. (19)). For the first excited state, we have ß = 1, and 
for the second excited state, the branching can be determined in 
terms of ô2 for the mixed transitions, as one has 

føl

1 — føi
(21)

where Te2 {721} : Te2 {72} is given by formula (17) from the 
theory for the rotational states. If føi is close to unity, the simul-

* Note added in proof. All L shell coefficients have now been computed 
also for Z2 = 55. For the £2 transitions, the LtK ratios come out about 1.5 
times smaller than corresponding to the Z2 dependence indicated in Fig. 2. 
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taneous measurements on the cascade and the cross-over lines 
lead to the best determination of (gx — çr) through the equation 
(21), which essentially provides a means of comparing this 
quantity with the value of Qo determined from the excitation of 
the second excited state. Which way the above formulae are 
used in the present work depends on the particular example; 
usually, however, it is most convenient to test the nuclear theory 
by determining ô2 from K:L and ß from ô2, and then to check the 
consistency of the results by comparing the Qo-values obtained 
from the excitation of the first and second excited states.

C. Electromagnetic Excitations.

If one bombards nuclei having the charge Z%e by projectiles 
with the charge Z±e and an energy Ei small compared to the 
Coulomb barrier, i. e.,

ZrZ2 e2

1'0
(22)

then the predominant process will be the excitation of the nuclei 
through the effect of the long range electromagnetic forces. The 
theory for this process has recently been worked out in great 
detail by Alder and Winther (Al 2). The total excitation cross
sections are given by

(23)

(24)

ZiZ2e2

2

(25)

Here, M means the reduced mass, whereas Vi and v/ are the 
initial and final relative velocities of the projectiles. The dimen­
sionless functions f {%} are tabulated in the work of Alder and 
Winther (Al 2), and the values reproduced here in Fig. 3 for
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Fig. 3. Curves giving the /-functions defined in the text. The values are taken 
from the work of Alder and Winther (Al 2).

the electric excitations. The quantities B are the reduced transi­
tion probabilities for the excitation.

The collective rotational excitations are of electric quadrupole 
type. For these, the total cross section can be written in the form

69.4\2 Ai(Ei —dE')
ZT/ ’ (1 +Ai:Ä2)2

Be2 ■ fE2^} millibarn, (26)

if one inserts the effective excitation energy A E' and the LAB 
bombarding energy Ei in MeV as well as the Be2-£2 in units of 
10-48 cm4. The number Ai here denotes the exact mass of the 
projectiles in units of the nucleon mass, and A E' is related to the 
actual excitation energy A E by the equation

AE' = (1 + Ai:A2)-.dE. (27)

For all types of transitions one has, for the energies in MeV,
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ZiAii/2 Z2AE'
Ea>Al2 12.65 ’

(28)

where Eav is the ‘average’ bombarding energy defined by

1 \3/2
(29)

This means that different projectiles will have very nearly 
the same £-value if only they have bombarding energies in 
proportion to Zi2/3 Ai1/3. Without knowing the value of A E, one 
can therefore determine the multipole order A of the excitation 
by comparing the reaction cross sections for bombardments 
with different particles (Bj 1). With the type of the transition 
known, one can determine A E through the f-function by meas­
uring the excitation function for one kind of particles. Such a 
procedure may be useful for the interpretation of the results. 
Combined with measurements where the angular distributions 
of the emitted radiations have been observed, it allows a rather 
unambiguous level assignment.

The reduced transition probabilities for the excitations are 
the same as those for the corresponding de-excitation process, 
except for a trivial spin weight factor. Their determination from 
the excitation cross sections is therefore equivalent to measure­
ments of the lifetimes for the decay of the states excited. One 
has for the transition probability (cf., e. g., Bo 1)

2 /m l
= 1.23-IO13---------- JE5 —sec-1, I -> Io (30)■ 7 2 / + 1 e2

if AE is inserted in MeV and the Bez -e2 for the E2 excitation 
in units of IO-48 cm4. The half-life of the state I is given by

T = °-69Mn->.A
1/2 +

where the decay fraction for the /-transition to the ground 
state of course depends on the mixing ratio ô2 and the branching 
fraction ß. (Formula (19) can also be used for e {/} if the a’s 
in the numerator are replaced by unity). It is seen that the con- 
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version coefficients come in twice when one compares half­
lives with excitation cross sections and, for this reason, rather 
large uncertainties are introduced when these coefficients are 
only known approximately.

III. Experimental Problems.
A. Calibration of Apparatus.

Two pieces of direct information can immediately be obtained 
by the detection of a conversion peak in the spectrum of momenta 
for the electrons emitted from a bombarded target: the energy 
of the electrons and their rate of production. In the previous 
chapter, it has been outlined how one can compute the relevant nu­
clear properties from these data. In the present chapter, we dis­
cuss the factors which enter in the determination of the exper­
imental quantities.

The spectrometer which has been used in the present work 
is shown in Fig. 4. The magnetically analyzed beam of particles 
accelerated in the 2 MV electrostatic generator (Br 1) enter the 
spectrometer through the collimator tube C. Each end of this 
tube is supplied with stops of tungsten foil, both having circular 
apertures, 2 mm in diameter. They serve to define the position 
of the beam so that targets placed on the target holder T can be 
bombarded only on the spot which constitutes the source point 
for the spectrometer. The collimator tube and the target holder 
are supported by lucite and given electric potentials of about 
+ 100 volts with respect to the rest of the spectrometer, which 
is grounded. This is in order to prevent the secondary electrons 
from seriously distorting the current measurements of the beam 
integrator. For the same reason, it is necessary to keep the spec­
trometer chamber under high vacuum by means of a diffusion 
pump. The target holder can be turned around its axis, allowing 
up to 12 different targets to be put into the bombarding position.

The fast electrons emitted from the target are analyzed in 
the magnetic field between the two plane and approximately 
semicircular pole faces Pi and P2, which define a wedge-shaped 
gap with the axis passing through the source- and focal-points 
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of the spectrometer. This field has double-focusing properties 
(Ko 1), viz. in the direction of the field because of the rotational 
symmetry around the axis, and in the direction of the axis because 
of the shape of the curves defining the extension of the field where 
the electrons enter and leave the deflecting region. This type of 
spectrometer is convenient for the present purpose, because it 
utilizes a relatively large solid angle and, in addition, permits 
the source to be ‘viewed’ easily from the same side as that bom­
barded.

The number of projectiles scattered from the target and 
entering through the entrance stop which defines the bunch of 
electrons accepted by the spectrometer greatly exceeds the number 
of electrons. A background arises therefore from these heavy 
particles, if they can reach the counter by one more scattering on 
the wall of the vacuum chamber. However, in order to trap the 
majority of them, one only has to place a kind of Venetian 
blind at the wall opposite to the target and the counter, in the 
way indicated in the figure. In the few measurements where a 
crystal and a photomultiplier tube were employed for detection, 
this system of stops also served to attenuate the effects of stray 
light. Actually, the bombarded targets often emitted fluorescent 
light which, e. g., in the case of the various rare earth oxides, 
was of a very high luminousity and brightly coloured.

In the present investigation, practically all the measurements 
were made with a Geiger counter as the detector. It had a round 
window, 7 mm in diameter and covered by a 1 mg/cm2 mica foil; 
the limiting stops employed in front of the window were always 
smaller and had rectangular apertures. The counter cylinder 
inside the Geiger counter was insulated from the window frame 
and given a potential of + 100 volts with respect to it. Thereby, 
the sensitive region of the counter was narrowed, so that a decrease 
by a factor of three in the efficiency for y-ravs was obtained 
without changing the efficiency for the electrons which enter 
through the window.

The current in the magnetizing coils of the spectrometer was 
used as a measure of the momentum of the electrons focussed 
on the counter stop. Provided that the current was changed so 
that it was never decreased and always brought up to the same 
maximum value before being switched off, the reproducibility 
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was in general better than ± 0.5 per cent. The linearity of the 
scale was checked by measuring the 24.5, 148, and 222 keV 
conversion lines of the Th (B + C + C") spectrum. The re­
manence was found to be about 2 per cent of the field corre­
sponding to the 148 keV line. The absolute calibration of the 
scale was made by frequent measurements on the Coulomb 
excitation of the 100 keV level in W182. This calibration disagreed 
about 1 per cent with the ThB measurement. The energy scale 
used is, however, believed to be correct within about ± 1 per 
cent.

The area P {n} of a conversion peak ‘n' in a spectrum is a 
measure of the corresponding yield. If the peaks are sharp, 
one can disregard the back-scattered electrons which will have 
lost sufficient energy to disappear in the continuous background. 
The production yield will thus be given by

Zff 4% e
A z <7 42 q ’

(32)

where the momentum of the conversion electrons is denoted by 
‘p’. The factor C (p) is applied in order to correct for the loss 
due to the finite probability that the electrons of momentum p 
cannot penetrate the counter foil. The correction factor used for 
the 1 mg/cm2 mica foil is shown in Fig. 5. For the higher momenta, 
the values are those given by Saxon (Sa 1), whereas the low 
momentum values have been estimated from measurements on 
the background electrons (cf. following paragraph). The average 
dispersion factor f was determined from measurements performed 
with various dimensions of the counter stop; it was found that 
f — 2.9 for the electron orbits accepted by the entrance stop 
shown in Fig. 4. The distance between source and focus was 
2 Zf = 120 mm and the counter stop generally used had a length 
of A z = 3.0 mm. The effective solid angle </ß corresponding to 
the entrance stop employed was determined by a comparison 
between the intensity obtained with this stop and that obtained 
with another stop, which subtended a known solid angle and was 
so small that no electrons passing through it could get lost in 
the pole faces or elsewhere. The value found in this way was 
dQ14 n — 0.90 per cent, if one includes also the effect of the
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finite width of the counter stop, which was Ax = 3.5 mm. The 
theoretical angular distributions of the emitted electrons have so 
far only been evaluated for the K shell (cf. Ro 2, Al 2), and the 
relatively small effects expected because of anisotropies have 
therefore been neglected everywhere in the present paper. The 
last factor in equation (32) contains the total charge ‘g’ carried 

2*
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Fig. 5. Counter efficiency of Geiger counter with a 1 mg/cm2 mica window. The 
part of the curve which has been drawn in full is based on the curves given by 

Saxon (Sa 1). For the extrapolation, confer the text.

by the collected projectiles, and this quantity was measured 
with a glim-discharge beam integrator, which had proved reliable 
to within a few per cent.

The Coulomb excitation cross section a is related to the thin 
target yield by the equation

(33)

where is the decay fraction (cf. eq. (19)) and N the number 
of atoms of the kind investigated, which is contained in one 
cubic centimeter of the target material. The target thickness ‘s’ 
means the thickness in centimeters measured along the direction 
of the beam.

In the case of thin targets, it is often more convenient to 
measure the thickness in mass per unit area. If we denote the 
thickness, measured in these units and perpendicular to the 
surface, by 7’, then

t = S' Q’cos 0 (34)

where 0 is the angle between the beam and the direction perpen­
dicular to the surface. The specific density q of the target material 
need not be known when it is the thickness ‘t’ which has been 
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measured, because in that case only q/N enters in the cross 
section determination (33). This ratio corresponds to the mol­
ecular weight, and is therefore only influenced by the admixture 
of other atoms in the target, present either in the form of chemical 
compounds or otherwise.

Direct measurements of ‘Z’ by weighing of the targets give 
only the thicknesses averaged over relative large areas and are, 
consequently, insensitive to the effects of target inhomogeneities 
which may have arisen either during the preparation or during the 
bombardment. As discussed in the last paragraph of this chapter, 
we have therefore also tried to measure the thicknesses by other 
means. One method which immediately suggests itself is to 
employ the background radiation produced in the target atoms 
(cf. following paragraph).

B. Background Radiation.

In principle, one can reduce as much as wanted back­
ground radiations such as that of the scattered projectiles or, 
e. g., that generated by neutrons in the case of deuteron bombard­
ments. This is not true for the background of electrons produced 
by the bombardment through direct atomic processes in the 
target atoms, although the promptness of the ejection of these 
electrons still provides a means of distinguishing them from the 
electrons emitted during the more delayed nuclear de-excitation 
processes (Hu 2). It is therefore important to know in which 
way the production of these fast stopping electrons is dependent 
on the experimental conditions.

In the Appendix I, it is shown how one can estimate the 
probability for the direct ejection of an electron into the con­
tinuum with the kinetic energy Eg by means of a non-relativistic 
theory neglecting screening effects. To a first approximation, one 
obtains the following expression for the differential cross section do: 

do
-— ~ 10~18-Zi2- (35)

where the rest energy me2 of the electron is introduced for con­
venience. If one applies the counter foil correction factor (cf. 
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ref. Sa 1 in the preceding paragraph) to the semi-empirical ex­
pression given earlier (Zu 1), one obtains practically the same cross 
section as that given by the above formula (35). The extrapolated 
values of the correction factor C (cf. Fig. 5) have been ob­
tained from measurements on the stopping electrons, assuming 
the energy dependence (35) to be valid also at lower electron 
energies. However, a preliminary measurement, which we have 
made recently with the Geiger counter replaced by an anthracene 
scintillation counter, seems to indicate that this procedure leads 
to reasonable results.

According to formula (35), deuterons should give yields 
which, under the same conditions, are 16 times smaller than
for bombardments with protons. Actually, the yield is found 
to decrease only by a factor of about 10, but this may not be 
surprising in view of the experimental uncertainties and the ap­
proximations involved in the derivation of the formula (cf. 
Appendix I). It is nevertheless illustrative for the present purpose 
to discuss the optimum experimental conditions on the basis of 
formulae (23), (28), and (35). They imply that the background 
of stopping electrons depends on the parameters of the bombard­
ment through

const.
Zi14'3

(Ai-O8'3'
(36)

In the case of low-energy conversion lines, where this back­
ground will usually be dominant, it obviously is not favourable 
to go to much higher bombarding energies than those for which 
the cross sections for Coulomb excitation increase approximately 
as Bi4, because then the signal to noise ratio will begin to decrease. 
For E2 excitations, this optimum condition corresponds to 
£ ~ 0.5, as is evident from Fig. 6. The equation (36) is a con­
sequence of formula (28) for £, which, as mentioned earlier, 
implies that, in order to obtain a certain £-value for a given 
transition, one will have to employ bombarding energies in 
proportion to Zi2/3 Ai1/3. The maximum signal to noise ratio 
will thus, for the E2 excitations given by (26), be proportional 
to (Ai:Zi)4, which means that deuterons and a-particles should 
be 16 times better than protons, as far as the influence of the 
background of stopping electrons is concerned. As mentioned 
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above, the deuterons are not quite as good as that, and in addition 
they give the strong ‘outer’ background due to the neutrons 
produced (cf. Fig. 10). a-particles will therefore in general be 
preferable to protons and deuterons in measurements at low 
electron energies; in addition, at the optimum conditions they 
have the largest absolute values for the cross sections (cf. Eq. 
(26)). However, in the search for K-conversion lines, where the 
corresponding excitation energy is considerably higher than the

Fig. 6. Relative cross sections for E2 Coulomb excitation and the production of 
stopping electrons, as a function of the bombarding conditions.

electron energy, it often takes a comparatively high bombarding 
energy to obtain £ = 0.5. The necessary energies are, as shown 
above, 2.5 times larger for a-particles than for protons, whereas 
they are only 1.25 times larger for deuterons than for protons. 
When only a limited acceleration voltage is available it may 
therefore often occur that the relative smallness of the cross 
sections then obtainable with a-particles (cf. Eq. (26) or ref. 
Bj 1) excludes the employment of these projectiles and makes 
the deuterons best fitted for the purpose.

For the higher electron energies, it will be preferable to 
bombard with protons and to employ all the acceleration voltage 
available, since for these electrons the general machine back­
ground will usually be more important than the contributions 
from the stopping electrons. According to equation (26), a-par­
ticles can never give E2 cross sections more than four times 
the cross sections corresponding to protons of the same energy, 
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and as thick targets are preferable here, this advantage will be 
more than counteracted by the smaller effective target thickness 
(cf. following paragraph) and the approximately 8 times larger 
stopping power, which is to be expected for the a-particles.

In order to calculate the thick target yields corresponding 
to the cross section (35) one must know to what extent the elec­
trons can penetrate the target material. For very thin targets, 
the yields will of course be proportional to the target thickness, 
but, as the thickness is increased, the yield of electrons emerging 
from the surface with a certain energy will increase relatively 
less. This is due to the fact that the electrons will be scattered 
and lose energy on their way out of the target, so that those 
coming from the deeper lying layers will have to be generated 
with a higher energy, and therefore, according to formula (35), 
are produced at a much lower rate.

Since the production rate is approximately proportional to 
Eg~Q, one would expect the effective layer of a thick target to 
correspond to an energy loss for the electrons of about 10 per 
cent. However, the scattering of the electrons is so strong in tar­
gets of the heavy elements, that their direction of movement is 
completely changed before they have travelled even this small 
distance. The way in which the electrons emerge from such 
targets is thus to some extent similar to a diffusion process. 
Consequently, the effective target thickness depends most critically 
on the scattering cross section.

In Appendix II, it is shown that in the diffusion approxim­
ation one obtains a yield T which, for a target thickness t, is 
related to the corresponding thick target yield Y by

y- yco f1 — exP {— ^/foo }] ’ (37)
where the effective thickness t of the thick target is given by 

mg/cm2 (38)

if one inserts Eg in keV.*  It follows from these equations and from
* The estimate for published earlier (Zu 1) does not include the effects 

of the scattering and is five times larger than (38). However, the neglect of the 
grain size effect (cf. next paragraph), and an error in the value employed for the 
dispersion factor practically completely compensated the effect of this over­
estimate.
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(33) — (35) that the thick target yields should be proportional 
to Z23 in approximate agreement with the experimental findings. 
We have also checked the above estimates with respect to absolute 
magnitude, by bombarding silver and gold targets with protons 
of so high an energy that the thickness (38) can be considered 
nearly infinitesimal for the projectiles. These elements were

Fig. 7. Thin to thick target yields of stopping electrons emerging from the target 
surface with an energy of approximately 42 keV. The theoretical variation (37) 
with the thickness ‘t’ (perpendicular to the surface) of a homogeneous target, is 
represented by the solid curve. The dashed line indicates the effect of target in­
homogeneities corresponding to grain sizes of the order of 2 mg/cm2, if ‘f is inter­
preted as the mean thickness. The triangle points correspond to measurements 
on targets prepared by evaporation; the Ag and Au targets were made on glass, 
the Pb target on copper. The black circles correspond to measurements on sprayed 
targets prepared on a support of aluminum; the point on the solid curve corresponds 
to a target made by means of a particularly thin solution. The open circles cor­
respond to measurements on targets prepared by the suspension method; the 
yields have been corrected for the contributions from the brass support (cf. the 

text). For the plotted points, refers to the heavy atoms only.

chosen because they are easy to evaporate onto glass plates in 
vacuum and give thin targets which are optically homogeneous. 
The thicknesses were determined by weighing. The result of the 
comparison is shown in Fig. 7. In view of the approximations 
involved one would be inclined to consider the good agreement 
somewhat accidental.

In cases where oxide targets of the type X2O3 are used, one 
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would expect to be about 10 per cent smaller than given by 
(38), so that the thick target yields should be about 80 per cent 
of the values for the pure targets.

C. Target Preparation and Thickness Determination.

The amounts of the rare earth oxides which were available to 
us for the target preparation, at the beginning of the present 
investigation, were in most of the cases only of the order of 10 mg. 
Attempts to prepare the targets by letting solutions of the materials 
dry out were not successful; the compounds became deposited 
as crystals when the evaporation of the liquid was slow, and in 
very uneven layers when the evaporation was speeded up by 
heating. Instead, we therefore employed the following more simple 
technique. We made a suspension of the fine oxide powder in 
alcohol and allowed proper amounts of it to dry out slowly on 
small brass disks, which had been pressed down in holes made 
in a thick rubber plate. Such targets appeared to give relatively 
reproducible results, but they were certainly not ideally suited 
for the measurements, especially in view of the elfect of the grain 
size of the oxide powders.

It did not seem likely that reliable thickness determinations 
could be obtained by means of weighing, since the bombarded 
area often looked rather damaged when the targets were taken 
out of the spectrometer after the bombardment. The continuous 
background of the stopping electrons measured nearly simulta­
neously with the conversion lines appeared to olfer a better 
measure for the thickness of the targets in the region actually bom­
barded in the experiment. However, in the beginning we did not 
realize how important the scattering of the electrons was for the 
determination of the effective target thickness (38), which we 
overestimated by a factor of about 5 (cf. Zu 1). Consequently, 
we ignored the significance of the grain size, and it was only 
from a closer examination of the continuous background in the 
measured spectra that it became clear that this was not justified.

The relatively slow variation of Y: as a function of the
electron energy, which was found even for small values of this 
ratio, indicated that the grain sizes were in general comparable 
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to for electron energies as high as 50 keV. A similar behaviour 
was found for some of the pure metallic targets of, e. g., Ta and 
W, which had been prepared by evaporation in vacuum and 
visually showed a clear crystalline structure. For a calibration, 
it would therefore not be correct to employ the curve in Fig. 7, 
which corresponds to the homogeneous targets. If one were to 
idealize the grains as chips of a constant thickness to mg/cm2 
which are not overlapping, then the relative yields would be 
related linearity to the average thickness t < to in the way in­
dicated by the dashed line in Fig. 7 for the case to = 2 mg/cm2. 
Investigations of the targets in a microscope showed that the 
grain sizes were of the general order of 3 microns for the oxides 
used, corresponding to a diameter of about 2 mg/cm2, and thus 
somewhat larger than the estimates derived from (38) and the 
relative yield dependence.

As long as better targets were not available, we therefore con­
sidered it the best compromise to estimate their thicknesses by 
employing a calibration curve somewhere in between the two 
curves shown in Fig. 7. In the calculations we first subtracted 
the full yield of stopping electrons measured for the bare brass 
support, since this should be correct for the very thin targets, 
and give errors of only minor importance for the thicker ones. 
The transition probabilities arrived at in this way could, however, 
not be expected to be reliable to more than about a factor of 1.5.

Recently, larger samples of most of the rare earth oxides have 
been put at our disposal by courtesy of Professor Spedding 
and the Iowa State College.*  It has thereby been possible to 
produce more stable and homogeneous targets, in particular by 
employing the technique of spraying the dissolved material onto 
a hot surface.

When preparing the targets by this method we proceeded in 
the following way. First, a small amount of the oxide powder was 
dissolved in a few drops of pure concentrated nitric acid which 
was then heated until only the rare earth nitrate was left. This com­
pound was dissolved in distilled water and put into the bottle of 
a commercial perfume atomizer, which was adjusted to give the 
finest possible spray when operated by means of clean compressed

* We are very grateful to Professor Spedding for the great improvement 
of the measurements, which has been possible in this way.
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air. The solution was then sprayed onto the hot surface of a small 
polished disk of either brass or aluminum, in small bursts of 
duration of less than a second.

The temperature of the disk is rather critical and should 
usually be about 300° C. Also the concentration of the solution 
seemed to be of great importance. With a concentration of about 
1 mg per 10 cm3 of water it was possible to produce rather ho­
mogeneous targets on brass supports, but with an efficiency of 
only about 10 per cent. When such thin solutions were employed 
with aluminum as the support, we usually did not succeed in 
making the material condense on the polished surfaces. In these 
cases, we had to use concentrations of the order of 1 mg per cm3, 
which gave rather good efficiencies but, on the other hand, also 
a somewhat poorer homogeneity. After having finished the spray­
ing we heated the targets to approximately 500° C in order to 
decompose all the nitrate to the oxide. The targets produced 
in this way were very stable and usually sufficiently homogeneous 
within areas of the order of 10 mm2.

In this manner, we first made a thin target of Yb203 on a 
support of brass, which had been covered with a very thin layer 
of aluminum, so that the target thickness could be determined 
through a measurement of the energy shift of one of the well- 
known Al27 (p, y) resonances (the so-called sandwich method). 
The cross sections for Coulomb excitation, which were found by 
means of such a thickness calibration, were about three times 
smaller than the values found previously, and even smaller than 
those corresponding to the thickness found directly by means of 
weighing. The latter thickness was, moreover, considerably larger 
than that determined from the yield of the background electrons 
by means of the curve in Fig. 7 corresponding to homogeneous 
targets. These facts indicated that the target did not consist of 
the pure oxide, but that, in addition, it contained large amounts 
of light atoms.

It was therefore clear that a method was needed, by which 
one could determine the number of heavy atoms per unit area 
independently of the inhomogeneity and composition of the 
targets. Fortunately, this demand can easily be met through 
measurements on the spectrum of the elastically scattered pro­
jectiles. These particles can penetrate the target layers with energy 
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losses which are smaller than the energies transferred to the 
recoils in the collisions with the light atoms. The peak, which 
in the spectrum of the scattered particles corresponds to the col­
lisions with the heavy atoms, will therefore fall in a region above 
that in which the contributions from the light atoms are found. 
Moreover, it will be by far the strongest peak in the spectrum, 
since the cross section for Rutherford scattering increases as the 
square of the charge.

We therefore decided to set up a heavy particle spectrometer, 
which could view the bombarded targets through the pumping 
tube shown in Fig. 4. The direction of observation formed an 
angle of 104° with respect to the beam. The spectrometer consists 
of a 90° deflection magnet with a radius of 42.5 cm. The entrance 
stop was 2.5 mm in diameter and the distance between this stop 
and the target 104 cm. The exit slit was placed just outside 
the end of the plane pole shoes, and was adjusted to a width of 
0.85 mm. The particles were detected by means of an anthracene 
crystal counter. The homogeneous magnetic field was generated 
by means of permanent magnets, which were magnetized corre­
sponding to an energy of about 1.7 MeV for the protons accepted 
by the spectrometer. The so-called profile curves were then meas­
ured by varying the bombarding energy instead of the spectro­
meter setting.

An example of a profile curve measured for a thin target of 
Gd2Ü3 on a support of aluminum is shown in Fig. 8 together 
with the profile measured for a thick metallic W target. A thick 
Gd2O3 target would have given a yield approximately 50 per cent 
smaller than that of the thick W target, and the figure therefore 
shows that the sprayed target gives a maximum yield which is 
only about half of what it should have been. This clearly demon­
strates that the sprayed target is either inhomogeneous, or it 
contains a large amount of light atoms. A similar result was 
obtained with the above mentioned Yb2Ü3 target, except for the 
fact that the profile curve in this case did not go down to zero 
at the higher bombarding energies. The reason is that in this 
region the scattering from the brass support gives a contribution 
which overlaps the peak corresponding to the collisions with 
the heavy atoms, as a consequence of straggling effects in the 
target. By means of the profile curve, it was possible to explain 
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the discrepancies between the previously mentioned thickness 
determinations for the target as being due to an admixture of 
larger amounts of light atoms.

It thus appears that thickness calibrations by means of the 
background electrons are unreliable when the targets arc strongly 
inhomogeneous, whereas the admixture of lighter atoms is of 
minor importance because they do not contribute very much to

Fig. 8. Profile curves for a thick W target and a sprayed target of Gd2O3 (on Al), 
obtained by measuring the yield of elastically scattered protons as a function 
of the bombarding energy Et. The thin target contained 0.26 mg Gd per cm2.

either the production or the scattering of the d-rays. When the 
thicknesses are determined by the sandwich method or directly 
by weighing, the situation is the opposite. Here the inhomogeneities 
arc not so dangereous, whereas lack of knowledge about the 
composition of the target may give rise to larger errors.

The method employing the profile curves should be very 
reliable, particularly if one uses a light element like aluminum 
as support. From the measured profiles one can compute the 
thicknesses in the following way. The peak measured for a pure 
and homogeneous thin target (such as, e. g., the evaporated Au 
target mentioned earlier) reaches the thick target yield, and 
one can determine the thickness directly from the measured 
half-width when the stopping power of the material is known. 
As a consequence of inhomogeneities and light element im­
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purities the peak will, as we have seen above, be smeared out 
to a lower and broader one, but in such a way that its area does 
not change. One can therefore easily determine the hall-width 
which would have been found if the target had been pure and 
homogeneous; all one has to know is the thick target yield for 
the pure clement. These yields were obtained by extrapolating 
as Z23^2 from that found, e. g., for the thick W target, since this 
dependence is in accordance with both theory and experiment. 
The accuracy in the thickness determinations by means of this 
method is therefore only dependent on the energy scale for the 
accelerated particles, on the relative yields of thin to thick targets, 
and on the stopping power for the projectiles.

The largest errors are probably introduced through the stop­
ping powers employed. We have used values 10 per cent higher 
than those obtained from the semi-empirical expression given by 
C. B. Madsen (Ma 2), since this seems to be in better accordance 
with the latest experiments. For 1.7 MeV protons on W, the value 
employed is approximately 50 keV per mg/cm2. By means of this 
stopping power we compute for the scattering a theoretical thick 
target yield which is only about 10 per cent larger than found ex­
perimentally. However, the measured yields showed a dependence 
on the way in which the beam came through the stops of the col­
limator tube (C in Fig. 4), and the absolute yields are therefore not 
so reliable. For the thickness determination this is of minor import­
ance, since the measured yields were always immediately compared 
with the thick W yield measured under the same conditions. For 
the present purpose, the errors in the calibration of the scale of 
the voltmeter of the electrostatic generator are of no importance.

We repeated the measurements of most of the main conversion 
lines found in the old thin target experiments with new targets 
made by spraying the more concentrated of the above mentioned 
solutions onto 0.5 mm thick disks of aluminum. The yields of 
background electrons from these targets relative to the corre­
sponding pure thick target yields obtained from interpolations 
have been compared with the thicknesses determined from the 
respective profile curves. The result is shown in Fig. 7 and in­
dicates that the new targets were also somewhat inhomogeneous. 
Comparison between the yield of conversion electrons found in 
the old and new measurements, respectively, made it possible 
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to calculate the true average thickness for the old targets, which 
it was not possible to measure directly because of the fact that 
they were very inhomogeneous and made on a support of brass. 
The results obtained for the even elements are shown in Fig. 7. 
They seem to indicate that the grain diameters in the old targets 
were of the order of 2 mg/cm2, in agreement with the microscopic 
evidence.

For some of the elements, the energies of the conversion 
electrons are large enough to permit the use of targets which are 
thick compared to the range of the bombarding particles. In 
order to determine a nuclear cross section o from the correspond­
ing thick target yield, it is in general necessary to measure the 
dependence of this yield on the bombarding energy Eq. However, 
the absolute value of can also be found from a single
thick target yield measurement if the relative variation of the 
cross section is known, so that the theoretical ratio between the 
thick and thin target yields can be computed. This is the case for 
the Coulomb excitations, where cr is expected to have the depend­
ences given by equations (23).

For the present purpose, it is therefore convenient to express 
the thick target yield in terms of an effective target thickness 
dE%, which is measured in energy units and defined in such a 
way that equation (33) gives the correct value for the cross section 
corresponding to the energy Eq, if one makes the substitution

d(y{n)) I \n} dE 
~ ds * dEÅ ' (39)

with all the quantities on the right-hand side taken at the 
energy Eq.

For bombarding energies in the region of interest for Coulomb 
excitation experiments, it seems that the stopping power dE/ds 
of almost all substances follows an energy dependence approx­
imately proportional to the inverse square root of the energy of 
the projectiles (cf. Ma 2, Li 1). Employing such a relation one 
obtains, from (23), the effective target thickness

4Â

4Â
» £ 3

(40) 
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where £o is the £-value (28) appropriate for the bombarding 
energy Eq. The values of (IE, calculated from (40) are plotted 
in Fig. 9; they are rather insensitive to changes in the assumed 
energy dependence of the stopping power.

In the evaluation of the Coulomb excitation cross sections, 
we have employed the thicknesses given in the third column of 
Table 1. The values have been determined in one of the ways

Fig. 9. Effective target thicknesses for E /. Coulomb excitations, as defined by 
equation (40). The stopping power has been assumed to depend on the energy 
of the projectiles as but the curves are rather independent of this assumption. 
The changes would be the largest for the small ^-values, but even the assumption 
of an energy-independent stopping power would only increase the value for 2 = 2 
and = 0 from the 40 per cent given in the figure to a value of 50 per cent.

described above. The two methods with the profile curves and 
with the thick targets have been used in the majority of the cases 
and are the only ones which are expected to give reliable results.

IV. Results.
About three fifths of the elements with an odd number of 

protons have just one stable isotope, and the rest have no more 
than two. The results obtained with natural samples of these 
elements are therefore relatively simple to interpret. With five 
exceptions, of which only 71L11176 has a significant abundance

Dan. Mat. Fys.Medd. 30,110.17. 3 
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(2.6 per cent), all naturally occurring nuclides with an odd 
Z > 9 have an even number of neutrons and thus Iq 0. Ac­
cording to the considerations in Chapter II, one can therefore in 
general expect to excite the first two rotational states by the 
bombardment of these nuclides, and, in favourable instances, 
one should be able to detect three sets of conversion lines. It is 
of particular interest here to know the K:L ratios of the Al = 1

By — GAUSS'*  CM
Fig. 10. Spectrum of internal conversion electrons from the K, L, and Af shells 
of mHo165 corresponding to the decay of the first rotational state. The excitations 
were produced by means of bombardment with 1.75 MeV deuterons, and the 
target contained 0.22 mg IIo per cm2. The background consists of three parts. 
The first is field-independent and probably mainly produced by neutrons; the 
second is due to ^-activities induced in light elements present in the target, and 
the third comes from the stopping electrons ejected from the holmium atoms 
(dotted peak). The latter two are cut-off at approximately 600 Gauss-cm, as an 

effect of the 1 mg/cm2 mica foil covering the counter window.

decays, where the radiations will be of the mixed Ml and E2 
type. As discussed earlier, under the present conditions, it is 
often easier to measure the K lines corresponding to the decays 
of the first rotational states, if one produces the excitations by 
means of bombardments with deuterons.

An example of a spectrum obtained with 1.75 MeV deuterons 
is shown in Fig. 10. Only one set of conversion lines is visible on 
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the spectrum; they correspond to the first excited state of the 
nuclide 67H0165, which has an isotope abundance of 100 per cent. 
The measured points scatter relatively much, because the deuter­
ons induce a strong background of penetrating radiation (cf. 
Fig. 10), which fluctuates with the performance of the accelerator. 
The deuteron bombardments also produce ^-activities in light 
atoms present in the targets and their supports. For this reason, 
the use of graphite or aluminum as support materials was ex­
cluded, and all the deuteron measurements have been carried 
out with targets prepared on a brass backing. On the other hand, 
it is also evident from Fig. 10 that the background of stopping 
electrons, to which the deuterons give rise, is sufficiently reduced 
to allow a relatively good measurement of the K peak; with 
proton bombardments, this peak only appeared as a hump on 
a much stronger background of stopping electrons.

Just as for Ho, most of the other odd-Z elements investigated 
proved to have first excited states which decayed predominantly 
through K conversion as a consequence of large M1 transition 
probabilities. For these elements, the measured excitation cross 
sections are not so reliable, since the determinations of the K 
line yields are rather dependent on the applied counter foil 
correction and the background conditions. For some of them, 
it was necessary to determine the K conversion yields from the 
measured L lines by employing K;L ratios known from other 
sources. For the even-even nuclides the situation is more favour­
able, since here the K lines are of relatively less importance.

The elements with an even Z often have three or more isotopes 
which are stable and comparatively abundant. Most frequently 
the mass numbers A are then also even and the ground state 
spin, consequently, Io = 0. For these nuclei, one cannot reach 
more than the first rotational state by an E2 excitation (cf. 
Chapt. II), and the decay will also have to be a pure E2 
transition. Consequently the amount of K conversion is known 
theoretically (cf. Fig. 1), and since the coefficients in general are 
smaller than for the L shell, one can obtain rather reliable ex­
citation cross sections from the measured L peaks, even if the 
K peaks are not measurable because of the background condi­
tions.

Fig. 11 shows the spectrum of the L and Af (+ xV) peaks 
3*  
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measured for Er, where the first excited states of most of the 
even-even isotopes practically coincide. Another example, where 
this is not the case, is shown in Fig. 12. These two examples are 
typical of the even-Z elements also in that rather abundant odd-A 
isotopes arc present in the natural samples. The L lines from the 
first rotational states of these isotopes will probably fall in the 
neighbourhood of those of the even ones. They will, however, be

Fig. 11. The L and M (+ N) conversion peaks obtained by a 1.75 MeV proton 
bombardment of a target which contained 0.33 mg Er per cm2. The transitions 
are assigned to the first excited states of the even erbium isotopes, which are 
supposed to have practically coincident excitation energies. The background is 

due to stopping electrons.

difficult to observe because of their relatively small intensities, 
which are a consequence partly of the smaller L conversion of 
the mixed transitions, and partly of the difference in the spin­
weight factors appearing in the equations (7) and (8). Because 
of the comparatively small abundances it is also difficult to 
observe the very low lying K lines, and we have therefore in 
general disregarded the contributions from such isotopes. The 
situation may be different for elements such as W, where the 
odd isotope has a ground state spin Io = 1/2 and thus a rotational 
spectrum of the anomalous type (3).
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By — GAUSS*  CM
Fig. 12. Spectrum of conversion lines obtained by proton bombardment of a 
target which contained 0.26 mg Gd per cm2. The peaks drawn indicate the con­
tributions from the various isotopes, as assigned on the basis of the energy system­

atics (cf. the text).

Additional examples of the spectra discussed below are re­
produced in previous publications (Hu 3, Bj 1).

In the Tables I and II, we have summarized the results 
which we have obtained so far from our investigations of a num­
ber of elements. In general, the spectra were only scanned for 
electron energies below 170 keV. The conversion lines found 
in the experiments have been assigned to the atomic shells of 
the various isotopes on the basis of the general systematics (cf., 
e. g., Bo 1), as well as by comparison with the information 
available from other experiments (cf., e. g., He 1, Me 1, St 1, and 
Ho 1). From the measured peak areas we have computed the 
corresponding B-values by employing the natural isotope abund­
ances given in the paper by Hollander et al. (Ho 1). It has 
been assumed that all the excitations are of the E2 type, and that 
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the decays correspond to pure E2 transitions for the even-even 
nuclei, and mixed Ml + E2 transitions for the odd ones. In 
the following, we shall briefly comment on the transition energies 
and probabilities given in the tables. Our data can be compared 
with the results of the y-measurements made by other investigat­
ors, but, in the present paper, we will only make a few remarks 
on those occasions in which major discrepancies are found. For a 
more detailed comparison between the valions experimental 
results, the reader is referred to a forthcoming review article 
(Al 1).

25. MANGANESE. The thick target employed had been 
prepared by electro-plating. The surface was coloured and looked 
as if the manganese were covered with some sort of deposit; this 
may possibly imply that the value given in Table II for the ex­
citation energy is somewhat too low. The main purpose of our 
Mn measurement was to demonstrate the extent to which the 
method of detecting the conversion electrons could be employed 
for lighter elements, and this element was known to have a large 
excitation cross section. Other investigators (Ma 1, Te 1) have 
measured a value of 0.07 • 10~48 cm4 for elyijBie2, which, 
compared with the present result, indicates that the decay is a 
rather pure Ml transition. Thus, a Qo — 1 barn would be found 
if the excitations were interpreted as rotational.

26. IRON. A thick target consisting of iron enriched about 
20 times in Fe57 was employed for the measurements. We found 
two lines which we assigned to this isotope because of the good 
agreement with the conversion lines seen in the decay of 27C057 
(cf. Al 3). Due to the 50 per cent content of other Fe-isotopes in 
the target, the signal to noise ratio was comparatively small, 
and the LM lines were not measurable. However, the K:L 
ratio is not either a good measure of the mixing, since it 
is about equal for the Ml and £2 transitions in this region. 
The multipolarity can be determined much better from the <xk 
coefficients (cf. Al 3), which show that the 122 keV decay cor­
responds to a nearly pure Ml transition, whereas the 137 keV 
decay is of the £2 type. From the measured partial B-values one 
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can therefore determine the branching fractions, ß, for the transit­
ions to the ground state and to the first excited state at about 1-1 keV, 
respectively, as well as the total B-value for the second excited 
state. The multipolarities found for the transitions evidently 
conform with those corresponding to a normal rotational spin 
sequence 1/2, 3/2, 5/2, for which the data would yield the Qo- 
value given in Table II.

47. SILVER. The K lines corresponding to the lowest col­
lective excitation in each isotope could barely be measured, and 
those corresponding to the cross-over and stop-over transitions 
from the next collective state around 410 keV were not detectable. 
Large uncertainties must be ascribed to the total B-values ob­
tained. More reliable results can be derived from the y-ray 
measurements (cf. He 2, St 1, Me 2). The level schemes for the 
silver isotopes have been discussed briefly elsewhere (Hu 2) 
on the assumption that the excitations may be described in 
terms of rotational states.

58. CERIUM. No lines were found in the investigation.

59. PRASEODYMIUM. No lines were found in the investigation.

60. NEODYMIUM. The two weak lines found were assigned 
to a low-lying first excited state in the heavy isotope Nd150, 
which has an abundance of less than 6 per cent. The assignment 
was made because it was known that the higher mass numbers 
in this region correspond to the lower excitation energies (Bo 1). 
Recent y-measurements on separated targets (He 1, Si 1) show 
that the assignment is correct and that the estimated /Lvalues 
are approximately right. In the case of Nd, the measurements 
have not been repeated with sprayed targets, while this has 
been done for all the following elements of the rare earths.

62. SAMARIUM. With I his element the region of strongly 
deformed nuclei is approached and the excitation cross sections 
become correspondingly large. Unfortunately, the AT line of 
Sm152 appears to coincide with an Li line of Sm154. The yield 
of the composite peak depends on the bombarding energy in a 
way which indicates that most of it is due to L conversions. The 
fraction which corresponds to A conversion has been estimated 
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from the yield of the Li line of Sm152 by means of the K:L ratios 
given in Fig. 2. In the same way we can then calculate the yield 
which should be expected for the Ki line of Sm154. However, the 
energy for these electrons is only about 36 keV and they are 
therefore difficult to observe. Deuteron measurements made at 
an early stage did not give any clear evidence for the expected 
peak. From our data we estimate partial B-values for y-emission, 
which are 0.7 and 2.0 times those obtained for Sm152 and Sm154, 
respectively, through direct measurements of the emitted y-rays 
(He 1).

63. EUROPIUM. The two most important peaks in the 
spectrum were interpreted as the Li and Kz lines of the 52 per 
cent abundant isotope Eu153, because the other stable isotope 
Eu151 has less than 90 neutrons and is therefore expected to have 
appreciably higher excitation energies (cf. Bo 1); that this is 
the correct interpretation follows moreover from recent y-coin- 
cidence measurements and /5-decay evidence (cf. He 1, Ma 3). 
Thus, we obtain a value of 2.30 for the ratio between the ex­
citation energies of the second and first excited states, in good 
agreement with the value corresponding to rotational excitations 
of a nucleus with Io = 5/2 (cf. Eq. (5)). Our absolute values for 
the excitation energies seem, however, to be somewhat higher 
than found in the y-ray measurements. Our earlier deuteron 
measurements indicate that K:L~ 1 for the decay of the first 
excited state, and with this value for the ratio B-values consistent 
with the nuclear theory are obtained by means of the formulae 
(16) to (21). Although the indications of a peak corresponding 
to the expected stop-over L21 line also fits into the picture, it is 
still only a very crude determination of the M1 contributions, 
as the yield of the weak Kz line is rather uncertain. However, 
the fact that this line is observed shows clearly that the Ml 
transition probabilities must be relatively small. Comparison 
with the partial B-value found for the corresponding y-ray 
(He 1) indicates that the cross-over transitions should actually 
be even stronger than we have found.

64. GADOLINIUM. Evidently there is some ambiguity in 
the way in which the yield corresponding to the large group of 
peaks in Fig. 12 has been divided among the various L and M 
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lines, which are only partly resolved from each other. On the 
whole, the corves shown correspond to (M + N):L ratios which 
are somewhat lower than those given in Fig. 2. However, the 
computed B-values agree well with the recent results obtained 
from y-measurements (He 1), except for the isolated, but very 
weak Li154 line. From our data we estimate a partial B-value 
for the y-emission corresponding to this line, which is about 
1.8 times smaller than that found directly. Higher energy radia­
tions from the odd Gd-isotopes have been observed in the same 
y-experiments, but with the yields reported, we would not be 
able to detect the corresponding conversion lines. (Cf. also the 
discussion in the beginning of the present chapter).

65. TERBIUM. The only terbium line which could be 
detected with certainty was the Li line at 49 keV. From the 
yield of this line alone it is not possible to determine the total 
B-value, as it does not give the magnitude of the mixing ratio. 
However, on the basis of the rotational description, one would 
expect the nucleus to have a second excited state at approximately 
139 keV (cf. Eq. (5)), and the fact that the corresponding transi­
tions to the ground state did not give any detectable conversion 
lines, implies that the cascade transitions must be the strongest, 
and thus predominantly of the M1 type. We find that more 
than 80 per cent, and probably as much as 90 per cent, of the 
Li peak must be due to Ml transitions. Consequently, it ought 
to be possible to detect the cascade lines, even though the back­
ground is higher at the lower energies; unfortunately, however, 
all the terbium samples available were more or less contaminated 
with dysprosium, and the comparatively strong lines from this 
element concealed the presence of the stop-over lines. However, 
the data seem consistent with the mentioned degree of mixing. 
Recently, Heydenburg and Temmer (He 1) have succeeded in 
measuring the y-rays from the cross-over transitions. They find 
an energy of 136 keV and a yield which is about 1.6 times larger 
than that which we estimate on the basis of the above assumption.

66. DYSPROSIUM. The two strong transitions observed are 
assigned to the two most abundant even isotopes on the basis 
of the energy systematics found in this region of the elements.
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From the data we estimate partial B-values for ^-emission which 
are about 1.5 times larger than the values measured directly 
(He 1). From the arguments given in the introduction to this 
chapter it is not expected that the odd Dy isotopes would give 
rise to any measurable intensities, and no lines corresponding 
to these nuclei were observed.

67. HOLMIUM. This element provides a typical example, 
showing the ways in which one can test some of the regularities 
predicted by the theory. The only stable isotope of holmium is 
Ho165. The L electrons corresponding to the first excited state of 
this nucleus were easily measured in the proton experiments, 
but for the K line it turned out that the best results were obtained 
from deuteron bombardments. From the measured K:L ratio 
for these transitions we determine the branching and mixing 
ratios for the transitions from the second excited state, as com­
puted by means of the formulae (16) to (21). In the proton 
measurements we also found a weak line corresponding to the L21 
transitions and we can therefore calculate the total B-values for 
both states. The experimental results are seen to be consistent with 
the rotational description, which predicts an energy ratio of 20:9 
and a ratio for the B-values of 35:9, whereas the measured ratios 
are 2.21 and Z 3.2, respectively. In addition, the indications of 
K conversion peaks from the decays of the second excited state 
have estimated intensities in agreement with the theoretical ex­
pectations. It must, however, be admitted that the transition 
probabilities given for the second excited state are computed 
on the basis of very uncertain yield measurements. It is therefore 
not surprising that our estimate of the partial B-value for the 
cross-over y-ray is about two times larger than the value obtained 
directly from the y-measurements (He 1). This indicates that the 
M1 transitions arc even stronger than those corresponding to 
the mixing ratios given in Table II, but this would only be of 
minor importance for the total B-value computed for the first 
excited state.

68. ERBIUM. The masses of the erbium isotopes fall in the 
middle of the region where the energies for the first excited states 
of the even-even nuclides change only slowly with the mass num- 
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ber. The excitation energies can consequently be expected to be 
practically the same l'or all the even Er isotopes, and to these 
nuclei we therefore assign the pair of conversion lines shown in 
Fig. 11. The coincidence between the excitation energies is 
evidently complete within the limits of the experimental resolu­
tion. As for most other even-Z nuclides we do not lind the lines 
from the odd-A isotopes.

69. THULIUM. The spin of the only stable thulium isotope 
Tm169 is known to be 1/2 (cf., e. g., Li 2), and one can therefore 
expect to find the anomalous rotational spectrum given by 
formula (3). The strongest Coulomb excited line in both the 
conversion electron and the y-ray measurements (He 1) corre­
sponds to a transition energy of approximately 110 keV. The 
peak found at the position of the Tf line from this transition 
appeared too strong relative to the L line to be a pure M peak, 
and the clear indication of a peak, which was found at a slightly 
higher energy, also supports the impression that additional 
transitions are present, corresponding to an energy about 119 
keV. Relative to the L peak, the composite peak does not appear 
to be weaker at the lowrer proton energies, and we are therefore 
led to an assignment in which the two transitions belong to a 
119 keV excited state, decaying mainly via the stop-over to a first 
excited state at about 8 keV, but also to some extent by the cross­
over to the ground state. As a check, we have measured the excit­
ation function for the 110 keV transitions ; it was found to conform 
with an excitation energy of about 120 keV, even though the evi­
dence was not quite conclusive. In addition, the above interpreta­
tion seems to be consistent with recent /Ldecay experiments (Jo 1).

For a normal spin sequence the assumed level scheme leads 
to the value a = 0.79 for the decoupling parameter in equation 
(3), and a moment of inertia which would correspond to an 
energy of 6 /j2/2 3 — 75 keV for a first excited state in a similar 
even-even nucleus. These values are in good accord with recent 
theoretical estimates (Mo 1). The measured yields show that the 
presumed stop-over lines correspond to rather pure M1 transitions, 
put the K:L ratio is so large that only an upper limit to the cross­
over branching fraction can be obtained in this way. Instead, we 
have determined this quantity directly by comparison with the 
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measured cross-over yield, and Table II therefore contains only 
one value for the total transition probability.

70. YTTERBIUM. The situation here is completely similar 
to that of erbium, and the remarks made there apply also to 
the ytterbium measurements. In addition, we found in the a- 
bombardement of Yb a weak indication of a peak in the spectrum 
at an energy around 57 keV. If the peak is real it is most probably 
an L peak associated with a 66 keV transition, but we have no 
basis for further assignment.

71. LUTECIUM. The only conversion lines we detected with 
certainty were those from the decay of the first excited state of 
the 97 per cent abundant isotope Lu175. The measured K:L 
ratio shows that the majority of the decays correspond to ATI 
transitions, indicating that cross-over transitions from the ex­
pected second rotational state should be comparatively weak. 
The corresponding y-ray has been observed in the experiments 
of Heydenburg and Temmer (He 1), who find the ratio between 
the excitation energies to agree well with the theoretical value. 
On the basis of our data, we estimate a partial /Lvalue for the 
cross-over y-ray, which is about 4 times larger than the value 
found directly in the above mentioned y-measurements. However, 
our value for the mixing ratio is derived from equation (20) 
and depends critically on the K:L ratio, which only has to be 
decreased by 20 per cent in order to remove the apparent dis­
crepancy. This change would only be of minor importance for 
the computed total B-value for the first excited state, which is 
also found to be in good agreement with the results obtained by 
the above experimentors. On the other hand, for | cjk — qr |, it 
would imply that the correct value should be approximately 
1.8 times smaller than given in Table II. The yields which should 
be expected for the conversion lines associated with the decay 
of the second excited state are so small relative to the respective 
backgrounds that they would only be measurable under improved 
experimental conditions.

72. HAFNIUM. Our measurements on this element have so 
far only been made by bombardment of a comparatively thick 
HfO2 target, which had been prepared by the suspension method. 
When viewed in a microscope after the bombardment, the target 
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layer appeared to consist of rather small grains which were evenly 
distributed and which covered approximately 90 per cent of the 
surface. The thickness determination by means of weighing 
should therefore not be so bad in the present case.

In hafnium, the odd-A isotopes have excitation energies for 
the first rotational state, which are higher than those for the even 
ones. In spite of their comparatively small intensities, it was 
therefore also possible to detect the L conversion lines for the 
odd isotopes. The corresponding K lines were too weak to be 
measurable, but indications gave estimated K\L ratios of the 
order of 2. This ratio would correspond to partial B-values for 
y-emission, which agree reasonably well with the y-ray measure­
ments (He 1, St 1, Me 1). However, for Hf177 the transition from 
the first excited state has been reported (Ma 4) to have ö'2 < 0.02, 
and it is by employing this value that the very low B-value given 
in Table II has been computed. We have assumed that Zo = 7/2 
in agreement with the observed rotational energy intervals (cf. 
He 1), but this is of minor importance for the computed transition 
probabilities, for the even isotopes, a similar comparison with 
the y-ray measurements is less uncertain and the measured 
intensities are found to agree approximately with each other. 
The target was relatively thick and therefore the resolution 
obtained was not very good. Only in the a-particle bombard­
ments could the weak Hf176 lines be detected simultaneously 
with those from the more abundant isotopes, and this was because 
of the better resolution which was obtained as a consequence 
of the smaller effective target thickness. Comparison with the 
y-ray measurements made with separated targets (Me 1, He 1) 
shows that all our energy determinations for the hafnium 
lines are 1 or 2 keV too high, but that the assignments made 
are correct.*

73. TANTALUM. The Ta181 nucleus is one of those for 
which more detailed studies have been made by means of Cou­
lomb excitation experiments, and in several papers the results 
have been discussed in terms of the rotational interpretation (cf., 
e. g., Bo 5). All three y-rays from the excitation of the two lowest

* Note added in proof. Repeated measurements on sprayed targets have 
yielded partial B-values which are somewhat smaller than those given in Table I. 
For the B/78,180 peak, the average is 2.3 • 10’48 cm4, corresponding to a qua­
drupole moment Qo = 7.0 barn.
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excited states have been detected, and coincidence experiments 
as well as angular distribution measurements have confirmed 
that the energy ratio and the spin sequence for the levels are as 
predicted for a rotational spectrum.

The energies given in Table II are, as mentioned earlier, 
calibrated against the 100 keV transitions found for excited W; 
the values are slightly lower than those published earlier (Hu 3, 
Hu 1), but the ratio is still found to be 2.21 in excellent agree­
ment with the theory. If we add all the partial /^-values which 
we have measured for the first rotational state and, by means of 
equations (7) and (8), compare this total with the partial B-value 
measured for the practically unconverted cross-over y-transitions 
from the second state, then we find that one should expect that 
80 per cent of the transitions from the second level have decayed 
via the cascade to the first level. This means that <52 ~ 0.14 or 
that the cascade transitions are practically pure Ml decays in 
agreement with the measured conversion coefficients, as well as 
with the angular distribution measurements of McGowan (Me 3). 
With these values for the branching and the mixing ratio we can 
determine the total ß-value for the second excited state from the 
measured stop-over conversion lines and thus obtain a practically 
independent check on the branching fraction. The total B-value 
is found to be 3.6 times smaller than for the first excited state, 
in excellent agreement with the theory. This is of course somewhat 
coincidental, since the yield of the stop-over conversion lines are 
not very accurately measured, but, nevertheless, it gives a rela­
tively good confirmation of the values for the branching fractions, 
and therefore also of the determination of the mixing ratio and 
I Qk — (Jr |-

74. TUNGSTEN. With targets of natural tungsten there are 
several coincidences in the position of the conversion lines from 
the various isotopes. In bombardments with a-particlcs of suf­
ficiently low energy the only lines which remained were those 
corresponding to the low-lying first excited state of W183. The 
M + N peak from the decay of this level was easier to measure 
than the L peak, as the background was much higher for the 
latter peak which, moreover, was very close to the foil cut-off. 
The conversion coefficients are known from the ß-decay work 
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of Murray et al. (Mu 1). Using their results we can compute 
the total B-value from the 3/ peak alone, if we look apart from 
the fact that our L:(M + Ar) ratio seems too low. The computed 
B-value is however rather uncertain, and we have therefore 
repeated the experiment with a sprayed target made of WO3 
enriched in W183. These measurements confirm that the transi­
tions lake place in the odd isotope; unfortunately, however, we 
cannot evaluate a reliable transition probability from the data 
until information on the isotopic composition of the target ma­
terial becomes available. The spin of W183 is 1/2 and the second 
excited collective state is found to have an energy of 99.1 keV 
(Mu 1, Me 4). This is 2.13 times the excitation energy for the 
first collective state and corresponds to a = 0.19 and 3 /i2/S = 78 
keV, which is in good accord with theoretical expectations 
(Mo 2, Ke 1). The excitation energy for the first excited state in 
the even isotope W182 is 100.1 keV (cf. Bo 3), which is very close 
to the value for the second excited state of the odd isotope. We 
cannot expect to be able to discriminate between these two E2 
transitions in our measurements and, for this reason, we cannot 
determine the yield corresponding to the second excited state in 
W183, or the amount of W182 in the enriched target. For the natural 
targets, the yield of the composite L peak will be due mainly 
to the even isotope, for which one can therefore obtain a rather 
reliable B-value determination. For the measured peak we 
estimate the W183 contributions to be about 20 per cent, if we 
assume that Qo = 6.5 barns (as interpolated from Fig. 13) 
rather than the uncertain 8.4 barns given in Table II.

Also for the other two even isotopes, coincidences of the 
positions of the M and L conversion peaks make an accurate com­
parison of the total B-values difficult, as we have to employ 
the relative conversion coefficients given in Fig. 2. The average 
value computed for all the even isotopes corresponds to a partial 
B-value for y-emission, which is in good agreement with our 
previously published measurements (Hu 1), and with those of 
Stelson and McGowan (St. 1).

The value found in the experiments of McClelland et al. 
(Mc 1) is about three times smaller; their measurements on 
separated targets have confirmed the assignments given in Table 
I (cf. Me 4).
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75. RHENIUM. The pure metal of this element was only 
available in the form of a powder consisting of comparatively 
large grains. Consequently, our earlier experiments made with 
targets prepared by the suspension method were not very reli­
able, and we have therefore repeated the measurements with 
sprayed targets. In addition to the group of L and M lines 
from the decay of the first excited state of each of the two stable 
isotopes Re185 and Re187, the spectrum also showed the cor­
responding K line associated with the latter nuclide. The A:L 
ratio thus obtained is in good agreement with the value found 
from measurements on the /9-decay of 760s187 (cf. Ho 1). For 
Re187 we can therefore compute the total B-value in the usual 
way; the corresponding value for y-emission turns out to be 
about two times larger than that obtained directly in the experi­
ments of McClelland et al. The K line associated with Re185 
could not be detected with certainty, but the indications are that 
the K:L ratio is lower than for Re187. For the lighter isotope the 
ratio is not known from other sources, and we have therefore 
only given the two limits for the total B-value, which correspond 
to either a pure Ml or a pure E2 decay.

76. OSMIUM. Many small peaks were seen in the measured 
spectrum, but they were all of the same magnitude as the ex­
perimental fluctuations in the background and no lines were 
established with certainty.

77. IRIDIUM. The spectrum measured for this element is 
very similar to that obtained in the bombardment of rhenium. 
The measurements were made with a thick target of the pure metal, 
but the L peaks from the de-excitation of the two stable isotopes 
were clearly resolved due to the fact that the layer corresponding 
to the effective target thickness is comparatively thin for electrons 
with energies above 100 keV. The determination of the yield of 
the measured M peak was rather uncertain and we only found 
weaker indications for the K peaks. The K:L ratios for the two 
levels are however known from ß-decay experiments (Ho 1, 
Wa 1), and we can thus compute the B-values and the correspond­
ing moments in the usual way.

78. PLATINUM. Bombardment of a thick target of pure 
platinum metal yielded only two weak lines; they correspond 
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to lhe energies for the K and L electrons from a 210 keV decay. 
This transition has previously been found by McClelland ef al. 
(Me 1), and by Temmer et al. (To 1). By means of separated 
targets the former authors have shown that the process takes 
place in Pl195. This nucleus is of the even-Z odd-A type, and 
has a spin Io — 1/2. The L peak was barely visible, but the 
K:L ratio is definitely so large that the decay must be mainly 
Ml, and the level therefore has I = 3/2.

79. COLD. For this element the deviation from the spherically 
symmetric form of the closed-shell nuclei has become so small, 
that, in the present experiment, it was difficult to detect the Cou­
lomb excitation of the collective states. These states, however, 
have been investigated in detail by the y-ray technique, and 
angular distribution measurements have shown that ô2 < 0.6 for 
the first excited state at 279 keV (cf. Me 3). With this value for 
the mixing ratio we have computed the total B-value from the 
estimated size of the K peak.

92. URANIUM. After having replaced the Geiger counter 
with an anthracene detector we looked for the L conversion line 
from the decay of the 44 keV first excited state in U238. However, 
the background of stopping electrons was so strong at these low 
energies that the line could not be detected with certainty.

The partial B-values for y-emission, which we estimate from 
our data by means of the conversion coefficients given in Figs. 1 
and 2, are on the whole in satisfactory agreement with the results 
obtained from the y-ray experiments. On the average, the devia­
tions seem to be about 25 per cent, and this is of the same order 
of magnitude as the experimental uncertainties.

An additional check on the experiments, which at the same 
time constitutes a test of the theory of Coulomb excitation, can 
be obtained by computing the reduced transition probabilities for 
the excitations from the directly measured lifetimes of the excited 
states. As mentioned in Chapter II, such a comparison is in­
dependent of any particular nuclear model, but it demands a 
rather good knowledge of the magnitude of the various con­
version coefficients (cf. Eq. (31)), because the E2 y-transitions
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often constitute only a small fraction of the decays. However, 
the above mentioned agreement between the conversion electron 
and y-ray measurements indicates that the applied conversion 
coefficients are approximately correct, and the comparison 
should therefore be a significant test of the theory of the ex­
citation process.

The half-lives for the decays of the first excited state of several 
of the even-even nuclei in which we are interested here have 
been measured in recent years (cf. Su 1), and these transi­
tions are particularly well suited for comparison, because they 
have no magnetic contributions. In Table III, we have given 
the values for the half-lives as well as the corresponding reduced 
transition probabilities, corrected for the spin weight factors so 
that they can be compared directly with the B-values of Table 11 
(cf. Eq. (30)). The approximate agreement between the B-values 
obtained by the two different kinds of experiments seems very 
satisfactory when one considers all the uncertainties involved. A 
similar result has been obtained by Heydenburg and Temmer 
(He 1), who have compared their data with the lifetimes by 
means of total conversion coefficients taken from the paper of 
Sunyar. The values of efy), which we have employedin Table III, 
deviate by less than 10 per cent from those given by Sunyar.

V. Discussion.
From the experimental results summarized in Table II, one 

can compute the nuclear moments and gyromagnetic ratios by 
means of the formulae given in Chapter II, on the assumption 
that the observed excitations are of rotational character. This 
interpretation is suggested by the large electric quadrupole transi­
tion probabilities characterizing the excitations, as well as by 
the systematic trends in the properties of the observed levels 
(cf. below). For a few of the odd-A nuclei where two excitations 
could be observed (Eu, Ho, and Ta), the predictions of the 
theory have also been tested, in a more quantitative way, by the 
measured ratios of the energies and excitation cross sections for 
the two levels. As far as the relative cross sections are concerned, 
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the consistency of experiment and theory is evident from the ap­
proximate equality of the Qo-values derived from the excitations 
of the two levels (cf. Table II).

A. Quadrupole Moments.

The Qo-values obtained from the present measurements and 
listed in Table II are plotted in Fig. 13 as a function of the 
nuclear mass number A2. They exhibit a rather smooth variation, 
with fluctuations not exceeding the experimental uncertainties.

These intrinsic quadrupole moments may be compared with 
those derived from spectroscopic measurements for odd-A nuclei, 
by means of the relation (9). Previous comparisons of this type 
(cf., e. g., Bo 4) indicated that the latter Qo-values somewhat 
exceed those derived from transition probabilities. However, for 
7iLu175 and 73Ta181, where the discrepancies were largest, a

MASS NUMBER

Fig. 13. The Q0-values given in Table II plotted as a function of the mass number 
A2.* The circles represent the even-A nuclides and the triangles the odd-A nuclides. 
The uncertainties are supposed to be of the order of 10 °/0 for the black points, 
and 20 °/0 or more for the rest of the points. The points in parentheses correspond 
to 72Hf177 and 74W183, (cf. the comments in Chapt. IV). The broken line represents 
the theoretical moments for the odd-A nuclides, corresponding to r0 = 1.20-IO’13 

cm (cf. Mo 1).

* Cf. footnote p. 45.
4*
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recent more detailed analysis of the electronic configurations has 
led to a considerable decrease in the spectroscopic Q-values 
(Ka 1). For 7iLu175 and 73rfa181 the revised spectroscopic analysis 
yields Qo-values of about 12 barns and 9 barns, respectively, 
to be compared with the values 9 barns and 7 barns, listed in 
Table 11. The remaining deviation is hardly significant, in view 
of the existing experimental uncertainties.

Recently, a theoretical estimate of nuclear quadrupole moments 
has been made on the basis of the calculation of the binding 
energies for individual nucleons in deformed potentials (Mo 1). 
The equilibrium deformation has been determined by minimizing 
the total energy of the system of nucleons. The quadrupole mo­
ments, calculated in this way for the odd-A nuclei between 
A2 = 151 and A2 = 193, are shown in Fig. 13, where the theoret­
ical points are connected by a broken line. The absolute mag­
nitudes correspond to the value ro = 1.20 • 10-13 cm. The agree­
ment is very satisfactory, except for 73E11153, where our experimen­
tal quadrupole moment is about 30 per cent lower than the 
theoretical Qo-value.

B. Moments of Inertia.

The nuclear moments of inertia 3 derived from the observed 
excitation energies by means of equations (1) or (3) show a 
similar variation with A2 as the quadrupole moments, with a 
broad maximum in the region around A2 = 170.

Of special interest, from a theoretical point of view, is the 
relation between the moments of inertia and the nuclear deforma­
tions. This is illustrated by Fig. 14, where the ^-values determined 
from the energies given in Table II arc plotted against ()o- The 
correlation of the two quantities is evident from the grouping 
of the points around the dashed line shown in the figure, with 
the largest deviation from the general trend again occurring for 
63EU153. For comparison, the ^-values calculated from the rela­
tion (11), corresponding to the assumption of irrotational flow 
for the rotational motion, are also shown in the figure. It is seen 
that such a model gives moments of inertia which are smaller 
than the observed moments by factors of more than four, as 
has also been recognized previously (Bo 1, Fo 1, Su 1).
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The relation (11) assumes a simple ellipsoidal nuclear shape, 
and an increase of the moments of inertia for the irrotational 
model could arise from the occurrence of higher multipoles in 
the shape. Il appears, however, (Gu 1) that while such an effect 
is not unexpected and may have an appreciable influence on the 
moment of inertia, the ratio of 3 and (?o2 is much less affected.

A recent analysis of the nuclear rotational motion (Bo 2) 
has also shown that important deviations from irrotational flow

Fig. 14. Moments of inertia determined from the excitation energies by means 
of equations (1) or (3), and plotted against the corresponding nuclear deformations, 
as represented by the Q0-values (cf. Table II).* For the average nuclear radius 

we have employed the value Ro = r0-A21/3, with r0 = 1.20-IO'13 cm.
A correlation between the two quantities is indicated by the grouping of the points 
around the broken line. The points are marked in the same way as in Fig. 13.

are to be expected as a consequence of the nuclear shell structure. 
Thus, it is found that for pure independent particle motion in 
a deformed potential, the moment would be approximately equal 
to that for rigid rotation. The effect of residual interactions between 
the particles, not included in the average nuclear field, results 
in smaller moments of inertia, which increase with increasing de­
formation. The values for irrotational How are approached when 
the interactions become so strong that they destroy the shell 
structure. The observed magnitude and trend of the moments 
of inertia are interpreted as indicating a strength of interaction 
about three times smaller than corresponding to this limit (Bo 2).

* Cf. footnote p. 45.
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C. Magnetic Moments.

The Ml transition probabilities are measures of the quantities 
|</j< — QrI (cf. Table II), and if, in addition, the magnetic moments 
of the ground states are known, the values of the two gyromagnetic 
ratios can be determined separately by means of equation (12). 
However, the ambiguity in the sign of (gK — gR) implies that 
two sets of (/-values come into consideration. When the exper­
imental data are uncertain, one is therefore left with a very large 
range of possible (/-values, and only little can be learned from 
the measurements. This applies to most of the elements con­
sidered here, with the exception of the nuclei 63F11153 and 73Ta181. 
For the former, the occurrence of the comparatively strong cross­
over transitions shows that the magnetic transitions must be 
weak, and consequently the gyromagnetic ratios gx and gR must 
be approximately equal. From spectroscopic evidence the mag­
netic moment is known to be about 1.6 11. m., which corresponds 
to the values gx — gR — 0.64 i 0.1, whereas the estimate (14) 
yields a value of gR— 0.41. As mentioned in the comments on 
73Ta181, one has for this nucleus a comparatively good determina­
tion of the magnetic transition probabilités, which, by means of 
the value gR = 0.40 estimated from (14), yields the magnetic 
moments 0.1 n.m. or 2.9 n.m. for the ground state. The former 
of these values is excluded by the angular distribution measure­
ments (Me 3) which show that (ggK— gR) is positive if Qo is 
positive (cf. Chapter II A), as is indicated by the spectroscopic 
Q-values. The spectroscopically determined magnetic moment is 
2.1 n.m. (Br. 2), and combined with our data this value would 
correspond to gR = 0.17.

In order to obtain more information about the gyromagnetic 
ratios, better measurements of both the magnetic moments and 
the transition probabilities are needed. The present measure­
ments have shown that, in general, the magnetic transition 
probabilities are large, and this implies, as mentioned in Chapter 
II, that they are best determined by direct measurements of the 
branching fractions for the second excited states. One should, 
thus, compare the yield of the cross-over y-rays with the yield 
of the cascade conversion lines. Reliable measurements of the 
latter demand a better experimental technique than the one 
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employed in the present work. It would probably be advanta­
geous to monitor the electron yields by means of the elastically 
scattered projectiles, and to stabilize the position of the beam 
so that a higher resolution could be employed in the ^-spectro­
meter. This would also improve the accuracy in the measure­
ments of the yields in the decays of the first excited states, since 
the movements of the beam are responsible for the uncertainty 
in the determination of the half-widths and peak areas of the 
measured lines. Further improvements would imply the use of 
thin-walled counters and evaporated or painted (GI 1) targets, as 
well as considerations of the angular distributions of the conversion 
electrons. We hope to be able to investigate some of the more inter­
esting nuclei in this manner, when the new 4-MeV electrostatic 
generator of this Institute comes into regular operation.
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Tekniska Högskola’, Göteborg, Sweden.

Appendix I.
The non-relativistic theory for the ionization of the K shell 

by bombardment with heavy particles has been treated by 
Henneberg (He 3) on the basis of the Born approximation. 
For the present purpose, it is of interest to extend these calcula­
tions to include also the higher shells, and we shall therefore 
briefly outline a simple derivation of Henneberg’s formula.
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In the evaluation of the matrix elements one is, according 
to Henneberg (1. c.), justified in employing the Born approxima­
tion, i. e., to replace the product of the initial and final wave 
functions for the bombarding particle by the product of two 
plane waves, and this is true because the radii of the electron 
orbits are large compared to the classical distance of closest 
approach for the projectiles. With such a substitution, the integra­
tion over the coordinates of the bombarding particle is straight­
forward, and one obtains (cf. Be 1) the following expression 
for the differential cross section for the emission of an electron of 
energy

ç3
*- ff min

(43)*

V{q} = (44)

where Zi-e, Mi, and Hi are the charge, mass, and energy of the 
bombarding particle which has suffered a momentum change 
îïq in the C. M. system. From the conservation of energy and 
momentum, it follows that

fi9mln^(£B + £«)-]/^, (45)

where Eb is the actual binding energy of the ejected electron. 
Consequently, exp. (z ç-rj will be a rapidly varying function as 
compared to the electron wave functions ip, provided that one or 
both of the following two conditions are fulfilled:

> Eq or Eß > Eq , (46)

where Eo is the maximum energy which an electron can obtain 
in a free collision with the bombarding particle, i. e.

Er
Eo — 4 m — , (47)

3/1

if ‘in' denotes the electron mass.
Provided that the condition (46) holds, one can easily show, 

by expanding exp. (z</-r) in spherical harmonics and performing 
repeated partial integrations, that, to leading order in 1/g, only

* N. B.: Formulae numbers 41 and 42 are omitted.
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s-states contribute to the integral V. For these states one obtains 
in the same way

Vs Rsf ( r ) • Rsi ( r } • r2 • dr - — —
rf

— (^sf ’ ^si) 
dr

or, from the differential equation for the radial wave functions Rs,

V, I2 - “a (—r • I < 0 } I2 • I < 0 > I2 • (49)
g8\ao/

where Z2 e is the charge of the target nuclei and ao the Bohr 
radius of the hydrogen atom.

If one neglects screening effects, one has (cf., e. g., Sommer­
feld (So 1)) for the nth shell

where the final wave function is normalized per unit energy range. 
From these equations one obtains the differential cross 

section for the shell, which per atom is

dEô 5 ’ 1 ’M, Aû / '(Eß + E0)io’ (52)

where Eß' is the unscreened binding energy defined by

Eb' = (53)
2 no

In equation (52) we have omitted the last factor in (51) as 
it is of no practical importance. The equation is the same in the 
laboratory coordinates,*  since (2 EirAfi)1/2 is the velocity of the 
bombarding particle relative to the nucleus which is initially at 
rest, and since, furthermore, the center-of-mass velocity can be

* Note, however, that small center-of-mass corrections are neglected in 
equation (45).
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neglected as compared to the velocities of the ejected electrons. 
Their angular distribution should, therefore, also be approxr 
imately isotropic in the laboratory system.

From the above equations, we find, as a total for all the 
shells, the differential cross section

da
dE0 (54)

where, for convenience, the rest energy me2 of the electron has 
been introduced. The sum S is given by

where

(55)

(56)

Taking as appropriate values the figures ci = 0.8; C2 = 0.16;
C3 — 0.04, and C4 = 0 = C5 = . . . ., we obtain the contributions 
shown in Fig. 15 for the various shells. They add up to a total 

Fig. 15. Relative contributions to the stopping electrons of energy Eg from the 
various shells, as calculated on the basis of a non-relativistic theory neglecting 

screening effects.
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which is nearly independent of u and has a value around 0.1 
which, inserted in (54), gives the equation (35) used in Chap­
ter III.

The comparatively good agreement between the cross sections 
computed from this formula and the measured ones must be 
somewhat coincidental. The relativistic effects appear to increase 
the contributions, in particular from the K shell, by large factors,§ 
which however will be counteracted to some extent by the effects 
of the screening, especially in the case of the higher shells. A 
correct theory would also have to take into account the higher 
terms in the 1/g expansion which, on the other hand, means 
that also the contributions from the p sub-shells etc. should be 
considered. The present derivation seems, however, to be suf­
ficient to show the general dependence of the cross section on 
the various parameters and brings out the main problems 
necessarily involved in a more complete treatment.

Appendix II.
When free electrons are generated with an energy Eg*  in an 

infmitisimal layer dx at the depth x below the surface of a target, 
then the fraction WdEg which reaches the surface by diffusion­
like processes and emerges with energies between and Eg + 
dEg, will be given by (cf. Be 2)

x} dEg = .g-^2/4T

(4 % r)1^2
1

T

dr
dEg

dEg,

where

(57)

(58)

The function r has been tabulated by Bethe (cf. Table II 
of ref. Be 2), but the values given must be changed somewhat 
for the low electron energies which we consider here.

Firstly, the transport mean free path Â should not be calculated 
on the basis of the Born approximation, but rather by employ- 

§ Private communication from C. Zupancic.
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ment of the classical approximation (cf., e. g., Bo 6), since for 
E^ xa 50 keV and Z% 70 one has the collision index

z2 = ,(zre)2
71(5-no 5 > 1 . (59)

This means that the screening cut-off lakes place at a scat­
tering angle which is z times larger than in the case of the Born 
approximation, so that one obtains a larger Â given by

—mg/cm2 for E\ in keV.
170/Z2

(60)

Secondly, the specific stopping power dE^dx for the electrons 
will, in the region which we are considering here, not be independ­
ent of the electron energy. The most probable energy loss for 
electrons which have travelled the distance dx will be better 
represented by the expression (cf., e. g., Segké (Se 1))

1 dEg Tie4 Z%
Q dx Mo A 2

650 kev
Eg- \ Z2 mg/cm2

for E(5 in keV,
(60

and for gdx œ 0.3 mg/cm2.
Consequently, one obtains from equation (58) the following 

approximate expression for r:

This energy dependence together with that of equation (35) 
for the production cross section leads, in combination with the 
distribution (57), to the following estimate for the yield of elec­
trons from a target which has a thickness 1/q in the direction 
perpendicular to the surface:
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where the effective thickness for a thick target is denoted bv /O *7  00

and is given approximately by

(64)

if one inserts the electron energy Eg in keV.
The dependence of the function (63) on the ratio t/t deviates 

less than 5 per cent from the simple exponential expression (37). 
In the above derivation, it has been assumed that the target sup­
port gives a back-scattering equal to that of the target material, 
but without contributing to the production of free electrons. 
Hence, the way in which the yield will actually depend on the 
target thickness may be somewhat different from that given 
by (63), even though the fact that the yield is decreasing so 
strongly with the energy implies a rather small back-scattering 
effect. Also the application of the diffusion approximation is not 
quite justified, and we have therefore only employed the more 
simple expression for comparison with the experiments.



Table I.

The figures given in the seven columns of this table have the fol­
lowing meaning.
1. Electron energies for the measured conversion lines. The probable 

errors are estimated to be about 1 °/0.
2. Bombarding conditions; H = protons, D = deuterons, and a = 

He+ ions. The bombarding energies are given in the laboratory 
system.

3. Target thicknesses and the materials employed by the preparation. 
The figures given refer only to the weight of the heavy atoms per 
unit area, since in many cases the amounts of light elements in 
the targets are not known. The values are obtained in the following 
ways (cf. Chapter III C).
a) Effective layer of thick target as determined by means of Fig. 9 

(angle between beam and surface equal to 45°).
b) Thickness of target evaporated on a brass support, as deter­

mined by means of the curve /0 = 0 in Fig. 7.
c) Thickness of target prepared on a support of brass by means 

of the suspension method, as determined by means of the curve 
f0 = 2 in Fig. 7.

d) Thickness of target prepared on a support of brass by means 
of the suspension method, as determined by comparison with 
measurements on sprayed targets.

e) Thickness of target prepared on a support of brass by means 
of the suspension method, as determined by weighing.

In all other cases, the targets have been prepared either by evapo­
ration or by means of spraying, and their thicknesses determined 
through measurements on the elastically scattered protons. The 
evaporated targets were made on a support of graphite in the case 
of Ta, and on copper in the case of W. The sprayed targets were 
made on a support of aluminum, with the exception of those used 
for the deuteron measurements, where brass supports were employed.

4. Total yields of conversion electrons from the ‘n’ shells of the atoms 
(n — K, L, or M). The values are computed by disregarding anisotro­
pies, and correspond to 1010 projectiles. For computional reasons, 
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the values are given with two significant figures. The errors are 
estimated to be smaller than 25 per cent, except in the cases denoted 
with the signs ~ or ~, where it may be expected that they can 
be as large as corresponding to factors of 1.5 and 2, respectively.

5. Assignments with respect to atomic shell and nuclear transition.
Subscript 1 refers to transitions from the first collective state to 
the ground state; subscripts 21 and 2 refer to transitions from the 
second collective state to the first, and to the ground state, re­
spectively. For composite lines, the fraction assigned to the various 
isotopes is given in the left-hand side of the column.

6. Transition energies for the decays corresponding to the assignments 
given in column 5. The binding energies have been taken from the 
table published by Hill et al. (Hi 1).

7. Partial BÆ2-values for the various conversion lines as computed 
from the partial cross sections by means of equation (26). The 
uncertainties are indicated in the same maimer as in column 4.

Table la.

§ See comments.

projec. target y<n} frac. assign. e(n) B : e2

keV AjMeV mg/cm2 Z2 per 1010 n A2 keV 10'48 cm4

118.3 H 1.75 4.3a Mn ~ 5.9 1 55 124.8§ ~ 0.0009
115.2 H 1.75 4.2a5O°/o Fe67 - l.S 1 A 21 57 122.3 ~ 0.0007
129.8 « « ~ 1.2 1 A'2 57 136.9 ~ 0.0004
283 H 1.75 2.7a Ag ~ 0.21 1 109 308 - 0.0026
297 « 2.6a « ~ 0.16 1 *1 107 322 - 0.0023
299 « 2.6a Ag107 ~ 0.28 1 107 324 ~ 0.0021
— H 1.75 ~ 0.70c CeO2 —
— H 1.75 ~ 0.81c Pr6On —
88.0 H 1.75 ~ 0.51c Nd2O3 (~ 0.5) 1 150 131.6 —

125.7 « « ~ 0.36 1 Ti 150 132.4 ~ 0.31
75.7 H 1.75 0.24 Sm2O3 16 0.8 Tr 154 83.1 2.9
« « « « 0.2§A\ 152 122.5 —
81.7 « « ~ 3.1 1 Mi 154 83.1 —

115.3 « « 2.4 I 152 122.7 0.56
122.1 « « ~ 0.5 1 Mi 152 123.5 —

t~35) D 1.75 0.66d Eu2O3 (< 20) 1 *1 153 — —
77.0 « « ~ 18 1 153 84.7 —
« H 1.75 « 9.5 1 153 « 0.65
82.9 « « ~ 2.4 1 Mi 153 84.3 —

~103 « « (< 0.3) 1 -^21 153 - 111 (<0.05)
146.3 « « ~ 0.34 1 153 194.8 ~ 0.051

-189 « « i 1 l2 153 ~ 196 —
i = indication.
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Table lb.

§ See comments.

projec. target y<n) frac. assign. li'-l e{n) -Bie2

keV Aï MeV mg/cin2 Z2 per 1010 n A2 keV 10’48 cm4

67.9 II 1.75 0.26 Gd2O3 15 1 Lx 160 75.7 3.4
72.7 « 21 0.2 M1 160 (74) —

« « « « 0.8 Lx 158 80.5 3.4
78.9 « « ~ 3.9 1 158 80.4 —
83.0 « « 11 1 £x 156 90.8 2.8
88.4 « « ~ 1.9 1 Mx 156 89.9 —

116.3 « « ~ 0.24 1 Lx 154 124.1 ~ 0.73
49.4 D 1.75 0.58 Tb4O7 ~ 40 1 Lx 159 57.9 ~ 0.45
57.0 « « — 1 Mx 159 58.6 —
65.4 « « (~ 10) 1 Dy ctm — —
72.4 « « (~ 13) ~ 0.5§£21 159 80.9 (~ 0.2)

« « « « ~ 0.5 Dy ctm — —
80.3 « « — ~ 0.5§ M21 159 81.9

« « « — ~ 0.5 Dy ctm — —
66.0 H 1.75 0.10 Dy2O3 10 1 £x 164 74.6 4.8
73.1 « « 8.3 0.3 Mx 164 (74.8) —

« « « « 0.7 L1 162 81.7 3.2
80.2 « « ~ 1.2 1 Mx 162 81.9 —
39.5 D 1.75 0.31 Ho,O3 ~ 45 1 7<x 165 95.1 ~ 1.6
59.5 H 1.90 0.69d « i 1 7<2X 165 (115.1) —
87.1 D 1.75 0.31 « ~ 8.0 1 7,x 165 96.0 —

« H 1.75 0.22 « 4.3 1 Lx 165 << 0.32
94.9 « « ~ 1.4 1 Mx 165 96.7 —

107.5 « « ~ 0.32 1 £21 165 116.4 ~ 0.074
(156) H 1.90 0.69d « i 1 K2 165 (212) —

i = indication. ctm = contamination.
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Table I c.

f Cf. footnote p. 45.

frac assign. je; -B: e2

il A2 keV IO'48 cm4

' 164'
1 Lx 166 80.8 3.6
1 Mx 168 81.1 —

170
1 ^21 169 110.4 ~ 2.1
1 L21 169 111.2 0.32

*0.4 m21 169 111.6 —
0.6 ^2 169 119.3 0.11
1 m2 169 119.7 —

170
1 Lx 172 77.9 3.9
1 Mx 174 77.0 —

176
1 Kx 175 114.3 —
1 Lx 175 114.9 0.36
1 Mx 175 114.2 —
1 Lx 176 90 —

1 L > 178l
1 1 180/ 94.7 ~ 3.4f

1 ■T 176 91 —

1
M, 1 178]

1 1 180J 95.0 —

1 Lx 177 114.3 ~ 0.57f
*0.4 Mx 177 114.2 —
0.6 Lx 179 122.7 0.28f
1 Mx 179 124 —

* Cf. Fig. 2.

projec. target

; keV Ai MeV mg/cm2 Z2 per 1010

71.9 H 1.75 0.33 Er2O3 58
79.3 « « ~ 17

51.0 H 1.75 0.29 Tm2O3 ~ 28
101.6 « « 4.2
109.7 « « 2.4

« « « «
117.8 « « (~ 0.3)

68.3 H 1.75 0.18 Yb2O3 28
75.0 « « ~ 10

51.0 H 1.75 0.21 Lu2O3 ~ 17
104.3 « « ~ 3.1
112.2 « « ~ 0.77

~ 80 a 1.75 ~ 1.2e HfO2t i

84.4 H 1.75 « ~ 110

~ 89 a 1.75 « i

92.9 H 1.75 « ~ 35

104.0 « « ~ 4.7
112.1 « « ~ 2.6

« « « «
~ 122 « « i

i = indication.

lJan.M'at.Fys.Medd. 30, no. 17. 5
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Table Id.

£ { n } projec. target V f n xv 11 / frac. assign. A e(n) ■ B: e2

keV Aj MeV nig/cin2 Z2 per 1010 /! A 2 keV 10'48 cm4

68.7 II 2.00 0.28 Ta 17 1 181 136.2 1.4
97.4 « « ~ 0.58 1 A21 181 164.9 ~ 0.22

124.4 « « 2.6 1 181 135.9 0.21
133.5 « « . — 0.83 1 My 181 135.7 ~ 0.066
153.5 « « 0.074 1 A21 181 165.0 ~ 0.029
34.9 a 1.15 0.35a W (< 2) 1 183 (46.4)
44.3 « « 0.91 1 A/i 183 46.6 ~ 0.53
89.6 II 1.75 0.23 7.0 0.8 7. j 182 100.4 2.7

« « « « ~0.2A, 183 (~ 100) —
100.3 « « 6.1 0.3 My 182 (102.6) —

« « « « 0.6 Lj 184 111.1 1.7
111.5 « « 3.8 0.3 My 184 (113.8) —

« « « « O.TLj 186 122.3 1.4
121.8 « « 0.55 1 My 186 124.1 —
63.1 H 1.75 0.30 Re 5.1 1 Ky 187 134.8 —

113.6 « « 1.1 1 Ly 185 125.7 ~ 0.30
122.8 « « 1.2 0.2 A4 ! 185 125.2 —

« « « « 0.8 Ly 187 134.9 ~ 0.18
132.8 « « 0.24 1 My 187 135.2 —

— 14 1.75 ~ Ie Os
116.4 II 1.75 5.0a I r 6.3 1 Ly 191 129.6 ~ 0.12
126.2 « « 5.6 0.2 A4j 191 128.6 —

« « 4.8a « « 0.8 Ly 193 139.4 ~ 0.061
135.4 « « 1.8 1 My 193 138.0 —
131.7 II 1.75 3.5a Pt 1.7 1 Ky 195 210.1 ~ 0.15
196.4 « « 0.44 1 Ly 195 209.8
200.0 11 2.00 3.8a Au 1.9 1 Ky 197 280.7 ~ 0.072

— a 1.75 ~ 0.5b IT - §
§ See comments.
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'Fable II.

The eleven columns of this table contain:
1. Nuclei investigated.
2. Excitation energy of collective states found by the measurements.
3. Conversion lines used for the computations (cf. column 5 of Table I).
4. K:L ratios obtained either from the data in Table I, or from Fig. 2, 

or from the results of measurements on radioactive elements 
(cf. llo 1).

5. Reciprocal of the square of the mixing ratios as computed from 
the equation (20) and the values in column 4, or as known from 
other sources. (See comments).

6. Branching fractions as computed from the equation (21) and the 
values in column 5, or as determined directly (cf., e. g., the case 
26Fe57).

7. Reciprocal of the decay fractions corresponding to the modes of 
decay given in column 3. (Cf. Eq. (19)).

8. Total 5^2-values as computed from the values of column 7 and 
the partial B^-values of Table I. The uncertainties are indicated 
in the same manner as in column 4 of Table I.

9. Spin of the ground state. (Cf. Ho 1).
10. Intrinsic quadrupole moments as computed from equations (7) 

and (8).
11. Gyromagnetic ratios computed by means of equation (15). (Note 

the discussion in Chapt. V).

Where the mixing ratios are only known to lie within certain limits, 
the values given in columns 7, 8, and 10 are those corresponding to 
the two limits, with the M1 limit given first.

5*
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Fable Ila.

§ See comments.

nucleus
level line

ti

K : L 1 :d2 fi 1 e (n)
B : e2

A,
Ö0

If/K—,9/?|
keV 10’48 cm4 10’24 cm2

25Mn55 125 § Kr > 7 1 1
64

6.6
~ 0.057
~ 0.006

3/2
1.1

(0.4)t
28Fe57 137

137
k21 
k2

— > 10 §
0

0.92 §
0.08 §

65 1
100 J

~ 0.044 1/2 0.9 —

47Ag107 323 A'i — 1
78
53

~ 0.17
~ 0.12

1/2
2.1
1.7

47Ag109 308 i4 1 1
67
50

~ 0.18
~ 0.13

1/2
2.1
1.8

00Ndl50 132 i4 *1.4 0 1 5.1 ~ 1.6 0 4.0
62Sm152 123 ii *1.1 0 1 4.0 2.3 0 4.8
62Sm164 83 il *0.57 0 1 2.2 6.2 0 7.9
63Eu153 84 ii ~ 1 ~ 0.4 1 2.5 1.6 5/2 5.8 < 0.1

« 195 i2i « (- 0.35) (—11) (< 0.6) 5/2 —
« 195 ^2 *2.2 0 0.65 11 ~ 0.56 5/2 5.8§

64Gd484 124 il *1.0 0 1 3.8 ~ 2.8 0 5.3
64Gd156 90 il *0.59 0 1 2.3 6.0 0 7.8
64Gd“8 80 il *0.48 0 1 2.0 6.5 0 8.1
64Gd18» 76 il *0.43 0 1 1.9 6.4 0 8.1
es™169 58 il — (> 50)§ 1 7.7§ ~ 3.5 3/2 8.3

« 139 i-21 — « > 0.95 § — — 3/2 — > 2
l)v16266J 82 il *0.43 0 1 1.9 6.1 0 7.9

««Dy164 75 il *0.37 0 1 1.8 8.5 0 9.2
»,Ho165 96 il ~ 4.9 ~ 11 1 ~ 7.7 ~ 2.5 7/2 7.7 0.51

« 212 ^21 — « 0.9 10 ~ 0.76 7/2 8.4

* Cf. Fig. 2.
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Table lib.

nucleus
level line

K:L 1 :<52 ß 1 : s { n }
B:e2 Qo

|f/Æ—07ï|
keV n 10’48 cm4 10-24 cm2

68Ereven 81 Lr *0.37 0 1 1.9 6.8 0 8.3
69Tm169 119 k21 ~ 6.5 > 20 0.9 1.8|

3.7 1/2 7.9« 119 ^2 *0.69 0 ~ 0.09 § ~34 /
,0Ybeven 77 Lr *0.25 0 1 1.8 6.8 0 8.3
7iLu”s 114 il ~ 5.5 (~ 20)§ 1 8.9 3.2 7/2 8.8 (~1.0)§
72Hf177 114 ii < 2 < 0.02 § 1 (2.6) ~ 1.5 § 7/2§ 6.0 <0.03§

178

72Hf180 95 ii *0.38 0 1 2.0 ~ 6.9f 0 8.3f
73Ta7«i 136 A\ 6.5 7.0§ 1 1.7 2.3 7/2 7.3 0.56

« 301 A2i ~ 7 7.1§ 0.80 § 2.8 ~ 0.62 7/2 7.6
W18274 vv 100 ii *0.36 0 1 2.0 5.5 0 7.5

74W183 46 .MI + Nt — 1 5.3§ ~ 2.8 1/2 8.4 —
74W78“ 112 Lr *0.45 0 1 2.3 4.0 0 6.4
74W788 123 Lr *0.54 0 1 2.7 3.8 0 6.2

75Re185 125 Lt 1
J9.2 ~ 2.7

5/2
7.6

|2.7 ~ 0.81 4.2
75Re187 135 ii ~ 5.1 ~ 8.7 1 8.7 ~ 1.6 5/2 5.8 0.63
77Ir191 129 ii 2.1§ 0.86 1 4.8 ~ 0.56 3/2 3.3 0.29
77Ir193 139 ii 3.7§ 3.6 1 6.2 ~ 0.38 3/2 2.7 0.53
78Pt196 210 Ai ~ 3.8 ~ 1 1 3.2 ~ 0.47 1/2 3.4 —

( OC 3.2 ~ 0.23 2.1
79Au197 281 Ai > 3 1 3/2 > 0.36

1- 1.7§ 4.2§ ~ 0.30 2.4
§ See comments. §) Cf. Fig. 2. f Cf. footnote p. 45.
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Table III.

Comparison of the B-values from the present Coulomb excitation 
measurements (summarized in Table 11 and repeated here in column 5) 
with those (column 4) computed from the half-lives (column 3) by 
means of equations (30) and (31). The half-lives have been taken from 
the tables published by Sunyar (Su 1).

f The values will be relatively higher if the K : L ratios are increased (cf. footnote p. 12).

Nucleus hv t1/2
Bei : ß2

(from t1/2)
Be»: e2

(from C. E.)

^2 keV IO’9 sec. IO'48 cm4 10'48 cm4

82Sm152 122 1.4 3.3 2.31
Gd 16484VjU 123 1.2 3.4 ~ 2.8t

68Dy160 85 1.8 5.0
68Dy162 82 — — 6.1
88Er164 90 1.4 5.5 —
88Er166 81 1.7 6.0 6.8
7OYb170 84 1.57 5.2 6.8
72Hf176 89 1.35 5.1 —
72Hf180 93 1.4 4.8 ~ 6.9
74W482 100 1.27 4.1 5.5
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1. We have in view the well-known particular case of the 
Problem of Three Bodies where the movement takes place in a 
plane, and two of the masses describe circles about their com­
mon centre of gravity, while the mass of the third body is in­
finitely small. Expansion of the coordinates in powers of the time 
t can be obtained by successive differentiations of the equations 
of motion, but this way of calculating the coefficients of the 
powers of t has been given up as too tedious1. We intend to show 
here that the calculation of the coefficients can be carried out 
with comparative ease when the equations of motion are trans­
formed into a differential system of the second degree, permitting 
to calculate the coefficients of tv by a set of recurrence formulas, 
particularly adapted to the modern calculating machines. The 
process is closely related to that employed in one of my papers 
on the differential equations of G.W. Hill2.

The equations of motion are given in Darwin’s paper, p. 103. 
We write them, with a change of notation3,

(1)

where
(2) 

(3)

d27

dl2 

1 G. H. Darwin: “Periodic Orbits”. Acta mathematica, 21 (1897), 129—132.
2 J. F. Steffensen: “On the Differential Equations of Hill in the Theory of 

the Motion of the Moon (II)”. Acta mathematica, 95 (1956), 25—37.
3 Darwin’s x, y, n, v, y, C have in succession been replaced by p, q, N, M, 

s, K.

C-P __ 9
d/2 

1*
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In these equations p and q are the coordinates of the in­
finitesimal body, the masses of the finite bodies are M and 1, 
their distance from each other 1, and the angular velocity of the 
system N.

Referring for further particulars to Darwin’s paper we put

so that

while (1) can be written

(5)

(6)

(7)

For the determination of p, q, r, s, X, Y we have the 6 equa­
tions (7), (6) and (2) which we propose to satisfy by power 
series in t without making use of Jacobi’s integral. We put

00 00

p = S avtV>

v = 0
7 = Z

v — 0
(8)

r
00

= s = y d,?, (9)
V = 0 V = 0

X
oo

=
v = 0

r = z /X
v = 0

(10)

Inserting these series in the 6 
the coefficient of ln shall vanish,

equations and demanding that 
we find by (7)
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(n > 0),

by (6)
n

Z(*

v = 0

and by (2)
n
yc c

LvLn-v
v = O

n
^v^n-v

V = O

n
H- 1) +1 cn—y “T 3 (v ~r 1 ) cv j_ ere_ v

l' = o
+ 3 (n 4- 1 ) cM + i = O ,

(11)

(12)

(13)

As initial values (constants of integration) we choose the 
coordinates and components of velocity of the infinitely small 
body at the time t = 0, that is «o, ai, b0, bi. Hence we find 
by (13), co and do being positive (since r and s represent distances 
from the finite masses)

whereafter by (10) and (5)

t’o = c03— 1,

do = |/cq + 1 —2«o» (14)

A = dô3- 1 • (15)

The remaining constants are calculated by the recurrence 
formulas (11) — (13). We state these in the form and order in 
which they are to be employed.
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(16)

(17)
v = O

(18)ncoe«

2 C0Cn =

- n do f n

2 (lodn ( v c n - v

vcn-V"

n-1
dv (ln -i’~- (ln ■

n
3 vdvfn_v
V=1

"y(ln-v
v = O

n

1» = 1

n

V =

71 — 1 71 — 1
(11 “I“ 1 ) On + 1 XI D, (lv (}n^v — i “H D fn — i’ — l

V = O 7’ = O

— 2 Nnbn — fn-1-
(20)

n -1 n -1
— n (11 + 1) bn + l = /?re77-v-l + A bvfn-v-l + - iVnn« . (21)

v = O v — O

We give below the lirst few of these recurrence formulas.

Co 1’1 = O0«l + /1()/11-

(/o(/l = Co Ci — «1 .

— Co Cl = 3 Cl (co + 1) •

— do fi — 3 di(fo +1).

— 2 a a = Mao co + fo(ao — 1 ) — 2 Nbi,

— 2 Ô2 = Mboeo + fobo + 2 Nai.

2 coC2 = 2 a0«2 + af + 2 bob-2 + b[ — cf.

2 dod2 = 2 C0C2 + cf — df — 2 <7 2.

— coC2 == 2 ci ei + 3 C2(co + 1 ).

— do fz = 2 hi fi + 3 1/2 ( fo + 1 ) .

— 6 «3 = M (no d + ai co) + fo ai + /1 (ao — 1) — 4 N/?2.

— 6 Z>3 = XI (boei + bico) + /10/1 + bi/o + 4 N(i2.
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lC0C3 — ao (is + ai «2 + bobs + bib% — cic2- 

do ds = cocs + C1C2 — (bids — as-

— 3 coes = 5 cie2 + 7 c2ei + 9 c3(eo + 1).

— 3 do fs = 5 di fa 7 do fi + 9 ds (fo + 1).

(24)

It is seen that these forms lend themselves easily to the cal­
culating machine.

2. In order to examine the convergence we write (16)—(21) 
in the following form where the constants of integration and 
those of zero order have been isolated. In (25), (29) and (30) 
we assume n >3, in (26)—(28) n >2.

CoCn = (lo (tn + dldn-l + bobn + 5iZ>n-l — CiCra-l
I n-2

d- — "/*  , (Up dn_v 4“ bv bn_v cv cn_v) .
zv = 2

(25)

J n-1

dodn = cocn — an (crcn-v
= 1

dv dn_v). (26)

n-l n—1
- ncoen = 3 nc„(e0 + 1) + 2 vcven-v + n^ cven_v. (27)

V = 1 V = 1

-ndofn = 3 ndn(fo + 1) + 2 vdvfn_v + n £ dvfn_v. (28)
V = 1 V = 1

— n(n +l)a„ + i = d0(fn-i + Men_i) + (ii(fn-2 + Men-2) + 
n-2

dv(fn_v_1 +Men_v_1) + an_1(f0+ Me0) —/n-i —2 Nnbn.
V = 2

(29)

11(114“ l)5n + l — bo (fn-1 4- Men -1) 4“ bi (fn-2 4“ Men-2) 
n-2

4~ bv(fn_v_1 4- Men_v_1) 4- bn_1(fo + Meo) 4- 2 Adian.
V = 2

(30)

We now put, as in an earlier paper1,

Åv
v v (v 4- 1 )

1 Acta mathematica, 93 (1955), 173.

(A > 0) (31)
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and assume that it has been proved for 2 < v < n that

1 fiv 1 < , 1 M < ba; (32)

and for 1 < v < n — 1 that

1 cv 1 < CA;, 1 dv 1 < I)KV, i er 1 <ea;, I fv 1 <fa;. (33)

We then find sufficient conditions, by (25) — (28) for the valid­
ity of (33) in the case v = n, and by (29) — (30) for (32) in the 
case v = n + 1, so that the inequalities (32) and (33) are valid 
for all v under consideration. We proceed as in the paper quoted, 
making use of the identity

m — v ' m (n? + 1 )

( 1 1
\r 4- 777 ---- V 4- 1 / (m r 1 ) (m + 2).

1 Interpreted as zero, if the upper limit of summation is less than the lower.

(34)

From this, writing for abbreviation

V = 1
we obtain the sums1

n — 1 + 2 sM-i o2 — ---- ---------X»
il (n + 1 ) (n 4- 2)

(35)

(36)

9 n — 1 +2 sw_i 1 \ /.n
(n + 1) (n + 2) R — 1'7?’ (37)

n-1
v^v^n—v

v = i

7? — 1 4- 2 sw_i 
(TTl ) (n~+l) (39)



Nr. 18 9

3. Dealing first with (25), we obtain, co being positive, by 
(32) and (33)

or

Co I ('n I < (A I öo I + B I 5o I) Kn

+ (A I m I + B I bi I + C I ci I) Kn-i 

1(A2 + ß2 + C2)“̂  KrK„_r
- v = 2

Co I Cn I < (A I Oo + B\bo I) n ( n ~+ 1)

4- (A I ai I + B I bi I + C I ci I);----- Ta(n — 1 ) n

- (A2 + B2 + C2) | 2 71 — 1 +2 sn_i 1 J 
(n 4- 1) (n + 2)_n — 1/ n '

(40)

If, now, we demand that the right-hand side of this inequality

shall be < coCKn — coC ------ , we obtain after multiplica-
7i (77 4- 1 )

tion by n (n 4~ 1) k~n as a sufficient condition for the validity 
of |cv I < CKV in all cases under consideration

.4 I «o I + B I b0 I + (A I ai I + B I Z>i I + C | a 1)^4 • -
7? ---- 1 À

< Cco.

(41)

We replace this condition by a simpler but more rigid con­
dition obtained by replacing the factors depending on 71 by 
absolute numbers which are at least as large.

71—1 2
Since -------- =14- , this factor is constantly decreasing

71 — 1 71 — 1
and may for 71 > 2 be replaced by 3. 

Putting next
n — 1 4- 2 sn — i 71 4- 1 y _ j —

7l + 2 71—1
(42)

and observing that
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(43)

so that

2

Hence
(44)Sn < 2 .

may replaceObserving finally that

(45)

< cot’

n — 1

- , we find by inserting this in (42)

n + 1
—— < 3 
n — 1

(41) by the more rigid condition

14
Sn <2-------

3 n + 6

which is independent of n.
4. Next, as regards (26), we find by (36), corresponding to 

(41), the sufficient condition

Cco + A (C2

1 A table of sn is found in S. Spitzer: Tabellen für die Zinses-Zinsen und 
Renten-Rechnung, Wien 1897, 369—370.

< Odo • (46)

The condition that the factor depending on n shall be steadily 
decreasing may be written in the form

5 2
Sn — 1 > ~ 42 n

which is satisfied for n > 10. We therefore have in this region1

Sn — 1---- < (48)
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which is also valid for n < 10. \Vc may therefore replace (46) 
by the simpler but more rigid condition

Cco +A + |(C2 + L>2) <Dd0. (49)

5. From (27) we obtain by (39) and (36) as a sufficient 
condition

71 — 1 + 2 Sn - 1
3 I eo + 1 I C + 4 CE----------------------< Fc0,

n + 2
(50)

and from this, by (48), the more rigid sufficient condition

3 I co + 1 I C + 5 CE < Eco ■ (51)

Since (28) is obtained from (27) by a simple exchange of 
letters we may at once by (51) write down the following sufficient 
condition, resulting from (28)

3 I fo + 1 I D + ÖDF <Fd0. (52)

6. As regards (29), we have, by (31)—(33) and (38),

n (n + 1) I flra + i I < I «o I (F + ME)
(n — 1) 77

I m I (F + ME) zm_2

A (F + .WE)
n (n + 1)

— 2 F 2 Sn— 2

Ân'~1 Ån
+ A I fo + Me0 I ------- + F ----- -------— + 2 NB ——.

(77 --- 1 ) 77 (77 ---- 1 ) 77 II + 1

(53)

If we demand that the right-hand side of this shall be
77

< 77 (77 + 1) A/\w + i = A--------Ån + 1, we obtain after multiplica-
, o 77 + 2Z7 “T- 2

tion by ------- the condition
77
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I «o I ( F + ME) + A | /0 + Me0 | + F] - ” + " -
(n — 1 ) n2

+ 2 XB
n -f~ 2 

n (n + 1)
Z + I gi I (F + ME) — 

n (n
n + 2 1

1) (jî — 2)Z

+ A(F + ME) Bn < A Â2
where

2 (n + 2) (n — 2 + 2 .sn_2 1
n (n —- 1) ' tî (n + 1) 4 (n — 2)

(54)

(55)

We proceed to show that

(n >3). (56)

Wc write (55) in the form

4 \ / sn - 2 — 1 3 n — 3
n (n — 1 ) ' \ n (n + 1) 4 (71 + 1) (n — 2)

1
where we may assume n X 5, since B$ = 0, B^ = -. Now the

first factor in Bn is evidently decreasing, and the second factor 
is the sum of two decreasing expressions, since

be writtenwhich can

71— 1 ’
and

71 — 3 71 — 2

which can be written

ti (n — 5) + 2 > 0.
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steadilv(54) are

91

(58)

The remaining factors depending on n in 
decreasing, and we find for n 3

a
12

n + 2
(n — 1) n2 (n — 1 ) n

Il + 2 1
n(n—l)(n —2) (n —l)(n —2)

2 5
_L_--------- -------------------

n (n — 1) (li — 2) 6

(59)

Inserting finally the limits (56) — (59) in (54), we obtain the 
more rigid, bid of n independent, sufficient condition

— [| a0 I (F + J/E) + A I fo + 3/eo I + F] + - NBÅ
18 6

+ 11 ai I (F + ME) ^- + -A(F + ME) < A z2. 
6 z 8

(60)

7. As regards finally (30), a comparison with (29) shows 
that we obtain the same form as (53), the only difference being 
that a and b, A and B have been exchanged and the term

...F------------ left out. We may therefore immediately write down the
(n —l)n

sufficient condition corresponding to (60)

— [| b0 I (F + ME) + B\f0 + MeQ I ] + 7 A'Az
18 6

+ f I il I (F + ME) 1 +1B (F + Mli)
(61)

8. The result of the preceding investigation is that, if for a 
certain n > 3 it has been proved that (32) is satisfied for 2 < 
v < n and (33) for 1 < v < n — 1, and if, besides, the inequalities 
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(45), (49), (51), (52), (60) and (61) are all satisfied, then the 
expansions (8) — (10) are convergent, provided that EKV | t |v

1 
converges, that is, for | t | .

The question arises whether, when the constants of integration 
arc arbitrarily given, it is always possible to find such values of 
Å, A, B, C, 1), E, F that the six inequalities are all satisfied. We 
proceed to prove that this is really so.

To begin with, Â can always be chosen so large that (60) 
and (61) are satisfied, no matter what values the other constants 
possess, and (45) can for sufficiently large z be replaced by

A I «o I + « I b0 |+Ta2 + B2) < C L-;C| (62)
4 \ 4 ,

while the three remaining inequalities which we write in the form

A + clco + jCj <7>(d0-jP (63)

3 I t’o + 1 I C < E (co — 5 C), (64)

3 I fo + 1 I D < F (d0 3 I)), (65)

are unchanged. Now it follows from (64) and (65) that we must 
choose

C < — co, D <Z — do, (66)
5 a

after which (64) and (65) are satisfied, provided that we choose 
E and F sufficiently large. After this, (62) will be satisfied, if 
we choose A and B sufficiently small in comparison with C, 
and (63) if A and C are sufficiently small in comparison with 
I). In thus choosing small values for A, B, C and I) we do not 
run into difficulties, because (31) — (33) show that small values 
of these constants can be compensated by choosing Z sufficiently 
large.

There is, thus, always a solution for sufficiently small values 
of |^|, if co > 0, do > 0 as assumed in (14).
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9. If at the time t = 0 we have « = 0, - = 0, that is1 dt
bo = 0, m = 0, certain simplifications occur. In that case there 
are only the two arbitrary constants (to and hi left, and we find 
first by (14) and (15), if ao 4= 0 and (to + 1,

co = I n0 I, do = | n0 — 1 |, co = | no |_ 3 — 1 , 

fo= I no — 1 I "3 — 1. I
(67)

The recurrence formulas now show that bv vanishes when v is 
an even number, and the other coefficients when v is odd. Under 
these circumstances the working formulas (16) — (21) are best 
written thus

— (2 n —• 1 ) 2 nci2n
n-l

M . a2v
V = 0

n — 1
^2n-2v—2~^~ ^2vf2n-2v—2

v = 0

— 2 A7 (2 71 — 1 ) bi n -1 — f2n — 2 •

(68)

n n
- c0c2n = zL a2v (l2n-2v “T ^2v-l ^2n-2v +1

v = 0 v — 1
n-l

c2 v c2 n - 2 v •
v=l

(69)

2 d0d2n
n — 1
- ^2 v^2n — 2v ^2n‘

v = 1
(70)

n(lof2n
n n-l

3 , vd2yfin—iv T V f2v ^2 n — 2v 4""
V = 1 V = 1

3 nd2n. (72)

n

2 77 (2 71 — 1) &2n+l = ^2v-l e2n-2v
v = 1

n
+ 'y b2v_y Î2n —2 v 2 n •4 JVun.

(73)
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The first few of these formulas are

--  2 (12 —

dodz —

----Co 62 =

— dof2 =

Maoeo + /o («o —1) —-2 A7>i.

«0«2 + h>t

Co C‘2 ---- <72 •

3 C2 (co + 1) .

3 dz (/o + 1 ) •

(74)

— 6 />3 = J/ôieo + bifo + 4 Ar«2. (75)

— 12 «4 = M (<7oe2 + «2 Co) + /2 («0 — 1) + «2/6 — 6 A7>3.

2 C0C4 = 2 aocu + Og + 2 bibs — c%.

2 do di = 2 co C4 + Cg — d£ — 2 a4 •

-- Co 64 = 2 C2 C2 + 3 C4 (co + 1 ) •

— (/0/4 = 2 dzfz + 3 c/4 (/o + 1).

(76)

- 20 65 = M (biC2 + b3eo) + bif2 + b3fo + 8 A'«4. (77)

---- 30 «6 = M («0Ö4 + «2 62 + «460) + fl («0 ---- 1 ) + «2/2

+ fiifo — 10 Nb5 ■

coco = (iodo + (12«4 + bl b5 +-5q — C2C4.
2

dodo — co co + C2C4 — dzdi — do.

— 3 co 66 = 3 (c2 e4 + 2 C4 e2 + 3 co co) + 62 C4 + 2 64 cz + 9 Cß.

— 3 dofo = 3 (d2^ + 2<74f2 + 3d6A) + M4 + 2/-4(/2 + 9rf6.

(78)

10. As a simple numerical example of the application of 
1

(74) — (78) we choose do = -, bi = — 1 besides the already 

assumed b0 = 0, «i = 0 leading to (67). For Ar and M we choose 
the values N = 1-1, M = -21 which satisfy (3). The results are 
given in the table below.



Nr. 18 17

of t. I have found

V av dy

0 •5 ■5 •5
2 •2825 1-2825 •7175
4 -—4332729 —4-407273 —2-4107271
6 1-3130591 19199425 8-728045

V t’r fv v bv

0 1- 1 —1-
2 —61 -56 —34-44 3 1-2045
4 527-3519 214-5577 5 —2-687845
6 —4442-1231 —1319-5487

A partial check on these calculations is obtained by calcu-
lating the value of Jacobi ’s constant K by (4) for various values

t = 0, K = 4-1425

t = -03, K = 4-1424999

which
As

seems satisfactory, 
regards the convergence, (32) and (33) are satisfied

the coefficients given in the table if, for instance, we choose 
z = 20, A = -005, B = -002, C = 02, I) = ‘04, E = 1'2, F = 
3.2, and since these values also satisfy all the six inequalities 
(45), (49), (51), (52), (60) and (61), the expansions (8) — (10)

1
are at least convergent for I t \ <-—.

20
This space of time may at first appear to be small, but the 

expansion for q shows that it corresponds to a movement in 
the vertical direction of nearly one tenth of the original distance 
of the infinitesimal body from either of the two finite bodies.

Indleveret til selskabet den 30. januar 1S)5(>. 
Færdig fra trykkeriet den 29. maj 195(>.
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Synopsis.
Various time-independent and time-dependent expansions for non-relativ- 

istic motion are considered with a “semi-classical” zero order term. The expan­
sions are expressed with the help of quasi-classical paths. They are all easily 
combined with a Born expansion. The connection with the BWK method and 
with the Feynman path integrals is pointed out.

Printed in Denmark
Bianco Lunos Bogtrykkeri A-S



1. Introduction.

Quasi-classical path integrals occur in various ways in quan­
tum mechanics. Their purpose may range from an ex­

pression of a hidden pining for the good old classical theory to 
a practical tool in an approximation process. Two characteristic 
forms are the time-independent integrals of, e. g., the BWK 
approximation1) and the time-dependent Feynman path inte­
grals2). The BWK method is usually restricted to essentially 
1-dimensional problems. We shall first deal with the question 
in how far this restriction is essential to the approximation. 
Meanwhile we may combine BWK approximation and Born 
approximation. We further discuss the connection between the 
time-independent and the lime-dependent forms (all non-rela- 
tivislic). Finally, we consider the singular case of quasi-classical 
propagation, which occurs in weak fields.

2. 1-dimensional stationary Schrôdinger waves.

Consider a particle with mass m in a potential

V(.r) = Vo(x) + Vi(x). (2.01)

The part Fo(.r) will be involved in a BWK expansion, the part 
Vi(.t) in a Born expansion. One of them may be zero. The eigen­
functions yj(.r) of the lime-independent Schrôdinger equation

Vi (a-) y (.r) (2.02)

with energy eigenvalue E can arbitrarily be split up into

V (.r) = ip+ (x) + (x) (2.03)
with

1*
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W(-T) = ^±(æ) ; A±(.r) = B=(.v)A(.r), (2.04)

where A (,r) is an arbitrary normalization function and

S±(.r) = dx' p±(x')’, (2.05)

p± (x) = ± p (a-) = ± { 2m (E — Vo (x) ) 1/2. (2.06)

The splitting (2.03) can be made unique by an auxiliary condition 
on the B’s. If we choose for this

with an arbitrary splitting function C(.r), insertion into (2.02) 
gives for the B’s the equations

The dashes denote the derivatives with respect to x.
We consider such cases for which the coefficients in the right­

hand member can be regarded as small, viz., the Vi terms ac­
cording to the Born expansion, the derivative terms according 
to the BWK expansion. So we expand

B±(.r) = T B(±r)(.r),
r = 0

(2.09)

with
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(2.12)(r = 0, 1, . . .),
X

and integration of (2.11) gives

(2.13)f

h
± —

of a 2-sided infinite range — oc 
( Vo (,r) < E). Then we have the

—^0

directions, respectively, the 
of (2.11) describes the 
reflection. The r’th order 
r-fold transmissions and 
splitting (2.03) according

In as far as y>+(x) and ^-(.v) are interpreted as the wave compo­
nents propagating in the + and 
first part of the right-hand member 
transmission, and the second part the 
approximation then accounts for the 
reflections. But the arbitrariness of the 
to the choice of the condition (2.07) and the splitting function 
C(x) (and also the arbitrariness of the normalization function 
A(r)) should be kept in mind.

Integrating (2.11) we have to care for (z) the singular points 
(“reflection points’’), where E— Izo(.r) = 0 and (zz) the range 
of (x). For the moment we restrict ourselves to the simplest case 

<x < oc without singularities 
boundary conditions
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This corresponds to the iterative solution of the integral equation 

for ip (.r)

(2.14)

with

— S+(x) — S_(x)

ip° (.r) = ip°+ (x) + ip°_ (.r) = B° A (.r) + BL A (,r) .(2.15)

As long as the continuous potential Vo(.r) is approximated 

by a step potential, the splitting (2.03) can be regarded as unique 

in each step interval. The continuous limit then corresponds to 

the choice C(.r) = 1 for the splitting function. This representation 

has been used by various authors3) 4>. The BWK part of the 

“reflection coupling coefficient” in (2.11) is then of 1st order, 

that of the “transmission coupling coefficient” can be made 

equal to zero by the choice of A (.r) = p(.r)12 for the normaliz­

ation function.

The choice of A(.r) = C(.r) = p(.r)_1/2 reduces the BWK part 

of all 1st order coefficients to zero and in general will lead to a 

more rapid convergence (if at all) of the iteration process.

Up to the order r = 1 this last choice corresponds to the 

genuine B5)W6)K7) approximation1). In higher orders the ex­

pansions are different, because the genuine method uses an 

expansion of S rather than of B.

There are many other modifications of the method (e. g. 

references 8), 9), 10)).
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3. 1-dimensional stationary classical waves.

It is well known that the BWK method is actually very much 
older than quantum mechanics and that much more initials 
would be needed to do justice to all inventors. We shortly point 
out the connection with 1-dimensional stationary classical waves 
(e. g. electromagnetic waves, sound waves) with wave equations 
of the type

(3.01)

d y (x)
i k (x) Z (x) ip (x) — —-  = 0 , 

ax
(3.02)

where À(x) is the wave number and Z(x) the impedance. The 
method of section 2 now leads to the integral equation

> (3.03)

"ith
(x) = ± \ dx' k (x'). (3.04)

The BWK part of section 2 is a special case of the present one with

Z?± (x) = (3.05)

4. Difficulties with more-dimensional stationary waves.

Now consider an iV-dimensional system of particles in a total 
potential

V (x) = Vo (x) + Vi (æ), (4.01)
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where (r) stands for all the coordinates .n, .T2, . . . .riv, and the 
splitting is done in the same way as in (2.01). The mass of the 
particle of which xt is one of the coordinates is written as im. 
We may also add vector potentials

Ai (r) = Aoi (r) + An (<r),

depending on the set of three coordinates of which x-i is one.

(4-02)

From the gauge condition of 
total condition

zero divergence we only need the

N N
\ i 1 dAoi (.r) \ 1 dAlt (.r)>---------_L2=0. (4-03)
f( mt dxi i = i ----- - in i dxii = i

The lime-independent Schrôdinger equation is then

(4.04)

In order to proceed in a similar way as in section 2, one 
needs a set of solutions SoA(æ)’ depending on an (W—^-di­
mensional parameter A, of the time-independent classical 
Hamilton-Jacobi equation

for the action function S0/1(.r). For a given A, the (ïV—1)- 
dimensional surfaces of constant action can be labelled by a 
1-dimensional parameter £4

So/l(æ) = Sozi(^zi). (4.06)
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Their orthogonal trajectories are the classical paths, £a can serve 
as a parameter along these paths. In analogy to (2.03), ^(rr) 
can be written as

ip (.r) = J dA y>A (æ) (4.07)

with
i

xpA (.r) = (,r) eh (4.08)

As a first attempt one might try to choose the A’s constant on 
the surfaces of constant action

Ayl(.r) = Az(êz). (4.09)

In this case, one should first investigate whether with (4.09) the 
expansion (4.07) is always possible. Then one would have to 
account for the coupling throughout the (x)-space between the 
waves y\d(x) with different /Ts. But, as surfaces of constant 
action for different A’s in general do not coincide, this coupling 
could not be described directly in terms of the A/i(£/i)’s. (In case 
the classical motion is reversible, the surfaces of reverse solutions 
A and — A conicide. Besides, an auxiliary condition can be 
imposed upon all pairs Aa(£a) and A-a(S-Â)- But, still, the 
difficulty concerning the coupling with other A’s remains).

Instead of an overall coupling between the yj/i(.r)’s with 
different A’s, one could try a local coupling in the point (.r) be­
tween the ^/l(.r)’s along the orthogonal trajectory of the corre­
sponding S'o.i(^zi) (classical path) through (.r) with different A’s. 
Then, instead of making the restriction (4.09), one would have 
to impose other auxiliary conditions upon the A’s in such a 
way that (analogous to section 2) the coupling equations do not 
contain their second order derivatives and can be separated 
with regard to the first order derivatives in the direction of the 
corresponding path. It seems difficult to choose the auxiliary 
conditions so that we get rid of the second order derivatives, 
which may be said to describe “scattering” (cf. section 5). In­
stead, we shall consider another choice of auxiliary conditions, 
by which we get rid of “coupling”.
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5. More-dimensional stationary treatment.

With this other choice it is possible instead of (4.04) to take 
a more general ^-dimensional Schrödinger equation

{E- ZT0 (x)} (.r) = Hi (.r)y>(.r), (5.01)

where in the Hamiltonian operator

ZT(x) = ZT0 (x) + ZZi (x) (5.02)

the part Hi will again be involved in the Born expansion.
In order to introduce quasi-classical paths we have to dehne 

a quasi-classical xV-dimensional Hamiltonian Ho(p,x) correspond­
ing to the hermitian operator ZZo(.i'). We can do this, e. g., by 

(real) 
put in

(5.03)

(5.04)

(5.05) 
i Oxi

In practice, H(p,x) defined in this way does not contain h. 
Otherwise, one might (at least in sections 5 and 6) instead of 
H (p, x) also use

Hc(p,x) = lim H(p,x), (5.06)
h->o

(

The operators (p) and (x) read in .r-representation

Xi. = Xi.

means of Weyl s rule of correspondence 
functions u(p,.r) and (hermitian) operators a, which 
the form12)

1
a(^’77) = ^v Trace

between
we

« (//, x').

h d
i = ~ ~

a — \ \ d£N clrjN e" a (£, r/) <—> a ( p, x)
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which can directly be obtained from

------- —XpiXt

IIc(p,x) = lim e H (.r)
ti^o

(5.07)

If there were a difference at all between H and Hc, it would be 
at least of 2nd order in h. This also holds for other possible choices 
of the rules of correspondence.

Owing to the relation

The hermitian operator Qo(-r) (or Qro(-r) if Hco is used instead 
of Ho) is at least of 2nd order in h. In case of the ordinary Schrô­
dinger equation (4.04), it is

n2 a2
2 d x]

(5.10)

The form (5.09) can be used in various ways. If, e. g., one 
takes Hi (x) = 0 and puts

ip (x) — A (x) e" (5.11)

with real amplitude andp base functions A(.r) and S(x), then 
the real and imaginary parts can each he equated to zero. This 
is done (with a longing for the good old classical theory) in the 
“pilot wave’’ theories14) 15) for the case (4.04), where Qo(x), 
according to (5.10), is real and therefore is taken together with 
the first square brackets of (5.09).
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Al present we consider, just as in section 4. a set of solutions
SoZ1 (.r) of the time-independent Hamilton-Jacobi equation for the 
action function Sozi (a?)

(5.12)

and the corresponding solution Ao q(x) of

The classical paths are again the orthogonal trajectories of the 
surfaces of constant action (4.06). (5.14) is the stationary con­
tinuity equation for the classical density Aozt(.r)2 along the paths 
of the system A in a statistical ensemble. Along each path of the 
solution A we introduce a parameter sa, for which

2

.r
(5.15)

*W(x) = A0/l(.r')exp . (5.16)

is an
(5.15)

infinitesimal
we can also take,

element of the path. Instead of 
say, the zth terms only, 

of the solution A, which

d.s.i =

where (</.rq)
the sums in
Integration of (5.13) along that path 
goes to (.r) from a point (.r'), gives

7

d.rf .4
„ dS0 a 
d — 

dxi
i
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(x') and Aozl(æ/) still have to be suitably determined. In the
1-dimensional case, where there is no divergence of paths, the 
density simply becomes inversely proportional to the velocity

(5.17)

In the representation (4.07), (4.08) we now use the auxiliary 
conditions on the .lzj(.r)’s, at least in such a way that the ^(.x/s 
for various values of A separately satisfy (5.01). Writing

Az(æ) = B/i(rc) Aoz(x’), (5.18)

that together with (5.09), (5.12), and (5.13) gives the equation

——- 'Qo (x) + Ht (x)} {Ba (æ) Aoz (x)} 
Aozl(æ)

(5.19)

We consider again such cases where the operators in the right­
hand member can be regarded as effectively small, so that we 
can make the expansion

with 

QO

r = 0
(5.20)

and
(x) = B°a (constant) (5.21)
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i

^0.4 (æ)

These equations might be said to describe the “scattering” of the 
separate semi-classical waves

= Aozt(æ)efi (5.23)

due to the “quantum potential” operator Qo(<f) and the “Born 
potential” operator Hi(.i-) in a similar loose hazy way as (2.11) 
was said to describe the coupling between the various (two) 
semi-classical waves.

Integrating (5.22) we have to take care of (z) the occurrence 
of “reflection and scattering singularities” and (z’z) the range of 
the coordinates (x) and the boundary conditions. As to (z), 
singularities may occur not only due to the vanishing of the 
velocity vector in the left-hand member of (5.22), but also due 
to the operators Qo and Hi in the right-hand member, e. g., along 
the envelopes (caustics) of the classical path for a given A. 
For the moment we restrict ourselves to the simple cases where 
they do not occur. As to (zz), we assume that the region of (x)- 
space, in which Qo and Hi are effectively different from zero, 
can be enclosed in an (N— l)-dimensional surface A (which may 
tend to infinity). Let us denote the points where the classical 
paths cut this surface with the velocity vector pointing towards 
the inside direction by (.r'). Further we assume that the “in­
coming wave” given on A can be represented by

^o(^) = (5.24)

with

Ä(O = B°aAoa(x) en (5.25)
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and a suitable choice for BQa (e. g. 1) and Ao A (a/). These choices 
for (a/) and AoA(æ') Aydl be used in (5.16).

Now we have for (5.22) the boundary conditions

«Z + 1*O')  = 0 (r = 0, 1,...) (5.26)

and (5.22) can be integrated along the classical path of the 
solution No a (a- ) which goes to (a?) from the corresponding point 
(a?') on 27

/•w
(,r) Ao a (x) = \

*V)
A o/i (a?) — i 

Ao a (x") ft

!Qo (x") + H) (a:")} {B<5) (æ") ^OA (*")}  O’ =0,1,...).

(5.27)

This corresponds to the iterative solution of the integral equation 
for

Az) »
VA (* r) = Æ (æ) + \ (ÅsA dp a (a:) — i 

loAÇx'7) ft

I 4{s0/t(*)  — -SoA^'Oy
(Qo (x") + (x")} \en VA O")i

with
^oA^ 

Â(æ> = ^Å^oaW^

(5.28)

(5.29)

as the semi-classical incoming wave.
The genuine BWK approximation, if extended to more than 

one dimension in higher orders, would again use an expansion 
of 5 rather than of B. The present expansion coincides with it 
up to the order r — 1 . It seems that in non-separable more- 
(3-) dimensional problems it has not been used in higher ap­
proximation than r = 0 (semi-classical waves)16).

If, for the left-hand member of (5.01), we take the ordinary 
form (4.04) with N < 3 for a free particle (Aoi(x’) = Vo (a-) = 0), 
the integrations can be carried out for various sets of free particle 
solutions SoA(a^), which all result in the usual Born expansion.

It goes without saying that besides the treatments discussed 
so far there are many other possibilities (e. g. ref. 17)).
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6. Time-dependent treatment.

The notions of coupling in section 2 and of scattering in 

section 5 should become somewhat clearer in a time-dependent 

description. The method of section 2 appears not suited to intro­

duce time dependence in a straightforward way, but the method 

of section 5 can be made more readily fit for it.

Instead of (5.01) we take the time dependent xV-dimensional 

Schrödinger equation

Ho(x, /)! y>(.r, 0 = Hi(x,t) ip(x, t). (6.01)

I z at i

The Hamiltonian operators may now also depend on time.

Whereas the stationary problem in general is to find the 

eigenfunctions (and eigenvalues) of (5.01) with certain boundary 

conditions, the general time dependent problem is to derive from 

y(.r, T) at a given time t' (initial condition) ip(x,f) at other times t. 
This connection can be expressed by

ip (,r, t) = \ dx'N K (x, t ; x', I') ip (x', t'), (6.02)

where K (x, I ; x', I’ ) is determined by

!---- - — — (x, 0 K (x, I ; x', t') = (x, t) K (.r, t ; x', t’) (6.03)

I i dt I

with the initial condition

lim K(x,t;x',t') = <TY (.r — .r') (6.04)
t —r->o

and (if (6.03) is understood to be valid for all t —- /') a somewhat 

different representation18) is obtained if K(x,t,x' ,t') is multiplied 

by a factor e(/ — /'), which is 1 for t > t' and 0 for t < /') the 

inversion condition

A’ (x, t ; x', t') — K - (.r', f ; x, I). (6.05)

The asterisk denotes the complex conjugate.
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In order to introduce quasi-classical paths, we define H(p,x\ Z) 
in the same way as H(p,x) in section 5. Instead of (5.09) we now 
have

[ li d 
I Idt

— Ho (x, t) \ehI
I (x, t ; x', t’)

D (x, t ; x', t')

(6.06)

The remarks in section 5, regarding Qo(.r), also hold for the pre­
sent Qo (x, t).

Proceeding in an analogous way as in section 5, we consider 
the solutions I0^(x, t;x', t') of the time-dependent Hamilton- 
Jacobi equation for the principle function (“eikonal”) Io (ar, t; 
x', t') with t > t'

dx

dHo

(6.08)

D0/(.r, t; x', t') = 0

dt

and the corresponding solutions D0^(x> t; x',

dI0Å(x,t-,x',t')
— Ho

\ dx ’ / d 
ddIoA dxi 

dxt

= 0 (6.07)

1 a2 Ho 

+ 2

i da

Mat.Fys.Medd.Dan.Vid.Selsk. 30, no.19. 2
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If there are different solutions IQ^Çx,t; x', t') (distinguished by 
hte suffix Â), they correspond to different classical paths from 
(x') at a time t' to (x) at a time f19). Analogous to (5.14), (6.09) 
is the dynamical continuity ecpiation for the classical density 
function Do^ (x,t',x' A')2- But, whereas (5.14) refers to the paths 
of the system A (all with the same energy B), (6.09) refers to 
the paths Â starting from (x') at a time This common starting 
point of diverging paths (which occasionally may also occur in 
(5.14)*)  gives rise to a singularity for t — F -> 0. For the direct 
(almost straight) classical path from (x') to (x) during the in­
finitesimal time interval from t’ to t we have in (6.08), (6.09)

(0

Then

(Ü)

lim
(x')

72

of Sy. (x) and A (x) we may then write (x, x’) 
(6.10) one has for (x’) —> (x) the singularity

lim >----
(x')->(x) i dx'i

* Professor A. Bohr informs me about a time-independent 3-dimensional treat­
ment initiated by Christy32) and generalized by Fröman33\ in which one chooses a 
special system zl of paths which start from points (x’) on a surface 27 (which now 
may also be inside the region where Qo and Hr are effective) and converge towards 
a point (x). For this system A, the treatment of section 5 becomes more analogous 
to that of section 6. Instead 
and A (x, x’). Analogous to

— (ôs0 A 
dx ’ /

dxi

is a special solution of (5.01) (in the special form (4.04) with TV = 3; AQi (x) — 0, 
with the singularity

1
lim J (x, x ) = lim Ao/1 (x, x ) — lim —pq.

(x')->(.r) (x')^(x) (xz)-> (x) x'—x|

A general solution tp (x) is then in Ftöman’s method with the help of Green’s 
formula expressed as
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For the parameter along the path introduced in analogy to 
(5.15) we can now take the time t. (6.08) could formally be 
integrated along the path A from (x', t') to (x, f)

D0/_ (x, t; x', /') = I)0Å (x, t'-,x, /')

(6-11)

similar to (5.16). The singular function I)0^(x',t';x',t') is left 
undetermined. For a classical path Ao, which for an infinitesimal 
time interval f — ■ t' is a direct (almost straight) path, lhe limit

y 
lim Do^oÇx, t; x', t') (t — t')z 

t — t'+o
(6.12)

remains finite. If L

then is explicitly 
ref, 16)) of (6.09)

dx \ / dx\
— ; t is a 2nd order polynomial in — , dt I F J \dt)
given by van Hove’s solution20) (cf. also

A)A(æ’ O2 = ^oA (x,
dxi dx'j

(6.13)

(x) = — 1 C , V/ fdJ <x> x'>
4 71 ) I dxn 

E

y (æ') — J (x, x') ,d.rn J
(ip)

where n denotes the direction of the normal on 27 towards (x). This expression 
(which is analogous to that of Kirchhoff in optics; cf. also ref. 16)), has been 
used with the semi-classical approximation for J.

2*



20 Nr. 19

The double bar denotes the determinant of the square matrix 

z. . rx . I dV \(i, j — 1, 2, ... A). For more general functions L lx, — ; / I, (6.13) 

still satisfies (6.09), as can directly be checked with the help of 

(6.07). Contrary to (6.11), (6.13) fixes the limit for t — t' 0. As 
long as the determinant becomes nowhere zero, the constant c; 

can be chosen so that (6.13) is positive. Otherwise, the singularities 

of have to be carefully investigated. It may be observed that 

a representation of the solution of (5.14) in terms ol\S’0;_ analogous 

to the solution (6.13) of (6.09) in terms of /0; cannot be given.

As the principal function 70; (x, f; x', /') is equal to the path 

/ cte \
integral of the Langrangian Lo x, — ; /

(6.14)

the (singular) initial condition for t — t'->0 for the direct (al­
most straight) path Âo from (x') to (x) during the infinitesimal 

lime interval from /' to t is

lim /O;o (x, / ; x',/') = lim (t— t') Lq\.vv,--------- ;t\, (6.15)
t — t'+o t —t'->o \ I — f

where (xv) lies between (x') and (x). The corresponding singularity 

of (6.13) is then given by

in agreement with (6.12).
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If, for t < I', we define

(6.17)

(with the asterisk for the case it might become complex) and

(6.18)

(6.19)

with

(6.20)

and make an expansion

(6-21)

with
(6.22)

for t > t'and

dH0

(6.23)

B^> (x, I-, x , f) = ßj(x',/'),

then, for t < t', /0/ (,r, I ;x',/') and Do; (x,t;x',t') in the equations 
(6.07) — (6.13) have to be replaced by —Iq\(x, t ; x', t') and 
/>ø) (.r, / ;.r', f), d/dt and d/dxi by d/dt' and d/dx^, c-f by —q. 
(If the classical motion is reversible, the restrictions of the equa­
tions to either t > t’ or t < t' can be dropped).

In order to proceed along similar lines as in section 5, we 
might (summing over all classical paths from (x') at t' to (,r) at /) 
try to put

d <
- Æ.(r + 1) (x, t- x, /') 

i /•
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With regard to (6.05) and (6.17), (6.18) we should have for t < /'

B<r) (.r, t;x', I') = (,r, .r, /). (6.24)

Now, if only Io^ and 79O; would satisfy an initial condition

lim > B?
t — t' -> o /.

/.1 o z
(.r', r)D0Â(æ, t\x, l')e

, t; x', t')

ôN (,r — x') (6.25)

for a suitable (perhaps not unique) set of B°’s, we would have 
for (6.23) the initial conditions

lim B|r + 1)(.r, f) = 0 (r = 0, 1, . . .). (6.26)
t — t' *o  ’

If further no „reflection and scattering singularities” would occur 
along the classical paths 2 from (.?') at /' to (.r) at t, then (6.23) 
could be integrated along these paths

!><)>(x,t;x'^l'') — i f
/)o/.(-v"> .r', /') fi ' QoU", /"))

'B<;> (.r", V, f) t", x', i')} (r = 0, 1, . . .).

(6-27)

This would correspond to the iterative solution of the integral 
equation for (æ> x'> t)

(6.28)

(6.29)

as the semi-classical approximation.
If it were only the non-uniqueness of the choice of the B? (.?', f') 

in (6.25), which determines the amplitudes with which the dif- 
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ferent paths from (.r', /') to (.r,/) take part in the representation 
of the propagation process, the problem might be to choose them 
so as to obtain as good convergence as possible, if convergence 
is possible at all. The crucial points of the solution are the ab­
sence of singularities and the limiting condition (6.25).

For the moment, we restrict ourselves to cases without sin­
gularities. It is likely that the occurrence of more than one path Â 
from (af, F) to (.r, f) entails the occurrence of singularities19^. This 
would mean that, with our restriction, we have cut off the dis­
cussion of such cases.

For the ordinary time-dependent form of the Schrödinger 
equation (4.04), the limit of the term (6.25) for the direct (almost 
straight) path from (af) to (af) during the infinitesimal time inter­
val t — t' has been investigated by many authors. It has been 
done particularly carefully by Choquard19), who also derived 
the limits of the other terms for the indirect paths. In fact he 
finds the latter to be zero, so that our corresponding B9(a/,/') 
in (6.25) would be left indetermined in this case, if it were justified 
to deal with them at all. The limit for the direct paths actually 
does give a ^-function in this case. It need not do so for Hamil­
tonians Ho(p,x;f) which are not 2nd order polynomials in (p). 
If it does, B® (x', t') can be determined fromZo

i

lim D0^a (x, t ; x', t') e 1 
t — t' -> 0

= ôN (.r — a-/) lim \ duN ! c^o 
T->0*  I

where for //«») we may take the leading term of L in the asymp­
totic expression for _> x .

i

It seems that, just as in section 5, the present expansion has 
not been used in higher approximations than r = 0.

In the present expansion, the “quantum potential” Qo and 
the “Born potential” Hi are treated on the same footing. 
They can also be separated by first taking 7<o(.r, / ; .r',/') as the 
solution of (6.03), (with (6.04), (6.05)) or (6.28) without the terms 
with H\. Then (cf. 18)), owing to (6.04), K(x, t ,x', t') is the solution 
of the integral equation
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K (,r, / ; x', t') — Ko (x, t; x', t')

t")Hi(x", t") K(x", •v',/')•
(6.31)

If H is effectively small, (6.31) can again be solved in a Born 
expansion by iteration.

7. Feynman path integrals.

Another expansion than that of section 6 is used in the 
Feynman path integrals 2) 20) 21) 22). This representation for a time 
interval from /' to t is obtained by iteration of the (zero order) 
solution of section 6 for infinitesimal time intervals and then 
taking the limit (if we were able to do so) of zero time intervals. 
In this section, we consider the solutions for infinitesimal time 
intervals from a different point of view than in section 6, avoiding 
at the same time the difficulties with possible indirect classical 
paths.

We use again Weyl’s rule of correspondence (5.03), (5.04), 
from which it follows12) that the kernel u(.r,.v') in .r-representation 
of the operator a

ay (x) = \dx'N a (x, x') y> (x') (7.01 )

is connected with the function rz(p,.r) by

The solution of (6.03) with (6.04) and (6.05) for an infinitesi­
mal time interval dt is in first order

(7.03

The term with //] will again be treated as a small perturbation.
For the other terms we write, using (7.02),
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Ko (x, t + dt; x', t)

= ôN (x — af) —- dt Ho (.r, x' ; /)

In order to obtain the Lagrangian rather than the Hamiltonian, 
we make, for a suitably chosen (p), the expansion

Then we could try in (7.04) a stationary phase approximation 
by choosing (p) so that the first order terms in (7.05) vanish 

(7.06)

For this choice of (p) the zero order terms just give
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where L(.r, - ; t is the Lagrangian corresponding to the Hamil- 
dt /

tonian H (p, x; t).
The integral (7.04) can now readily be evaluated if the higher 

than second order terms in (7.05) are zero, i. e. if Ho(p,x;t) is 
a polynomial in (p) of 2nd order. In this case, we obtain

y

d pi d pj

d2 Hoip,X + X ;
(7.08)

provided the determinant of the second order derivatives of Ho 
does not vanish. (Thus, the singular case that Ho(p,x; f) is linear 
in (p) must be excluded). With the help of (7.06) and the inverse 
relation

(7.09)

this determinant can (even if Ho is not a second order polynomial 
in (p)) be expressed in terms of Ao by

d2H0(p,
1
9 d (p)

1
2

dpidpj

(7.10)

The expression in curled brackets denotes the Jacobian. The 
resulting
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Ko (æ, t + dt; x , f)

(7.11)

is precisely the zero order contribution (with correct normalization 
factor) of the direct classical path in section 5 (if also there the 
correspondence is chosen according to Weyl’s rule), in agree­
ment with Choquard’s theorem19) that for infinitesimal time inter­
vals there is no contribution from indirect classical paths.

The case that Ho (p, x; t) is a second order polynomial in (p) 
is equivalent to the case that Lo\x, t\ is a second order 

/<fc\ '
polynomial in | —j. In other cases, the integral (7.04) will in

general not be exactly equal to (7.08) or (7.11) although, according 
to the principle of stationary phase, the latter expressions might 
be regarded as more or less appropriate approximations to the 
first ones—or vice versa.

(7.11) has likewise to satisfy the initial condition (6.04) be­
fore it can be regarded as a competitor of (7.04) for giving the 
most correct description.

If Ko (x, t;x',t') has been found for infinitesimal t—t', it 
can for finite time intervals formally be obtained by iteration in 
the well-known way. If t — t' is divided into n infinitesimal 
intervals f<*  + 1)— /<*)  = c?/<*)  (k = 0, 1, . . . n; (.r(°), Z(°)) = (x', t'), 
(x(n+1\ /(« + D) = (æ, f)), then

K (x, t; x,

Ko (æ<* +1>, /<*>)__  dt^ Hi ô
h

(7-12)

By lack of an appropriate practical calculus (another formal 
representation has been given by Davison22)), this limit can only 
be treated by approximation methods. Feynman considered it to 
result from the contributions of all kinematical paths from (x', t')
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over (.r(1), (.r(2), /<2)), . . . (.r(w), /(n)) to (,r, t) for all values
of (ad1)), (ad2)), . . . (x,(w)). Because, for infinitesimal /(* +1) — /<*)  = 

dtW, Ko (xd* +1), /(*+D;  x’(*),  /(*))  can in this picture of paths be 
regarded as due to the direct classical path from (x<*),  M*))  to 

(x(&+1), /(fc+1)), those kinematical paths which, in the limit of all 

dt<k> -> 0, would not tend to what we vaguely shall call „smooth” 
paths, will not effectively contribute to (7.12). The criterion when 

a path is considered to be „smooth” remains to be established.

For the case that (7.11) may be used for A’o in (7.12), an 

approximation by stationary phase has been considered by
*/r(fc+l) —x(k) x(k+l)_x(k) \

Cécile Mouette20'. The Ao ------ ,------- — ’sin
\ 2 dt^ I

the exponents arc expanded in powers of the (x(fc) — x.(fc))’s 

for suitably chosen (x(fc))’s. In order to make the phase stationary, 

the first order terms must be made to vanish. They do cancel if 
the (xd^^’s are chosen on a classical path Z from (x', /') to 

(x, f) at the times Owing to the conditions for infinitesimal 

time intervals, Â has to be a “smooth” path. The zero order terms, 

which can be taken before the integral signs in (7.12), then con­

tribute the factor

(7.13)

If higher than second order terms in the Taylor expansion may 

be neglected according to the principle of stationary phase, it is 

seen from comparison with section 6 that, in this approximation, 

(7.12) is again given by the semi-classical approximation (6.29). 

Thus, from all the kinematical paths, only the classical path z 

yields in the lowest order an effective contribution. It does not 

seem as if the higher order terms in the present expansion will 

be less intractable than those in the expansion of section 6. Be­

sides, also here, we come into difficulties if more than one “smooth” 

classical path is possible from (x', /') to (x, /). The convergence 

of the Taylor expansion giving a stationary phase near one of 

them becomes particularly doubtful near the others. One might 

try to make such an expansion near each of them and hope that 

contributions from space-time regions far from all of them could 

be neglected because of phase cancellation, so that (7.12) would 
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split up according to (6.19). In order to determine the amplitudes 
of the contributions (æ, I ; æ', t') of the various paths, one 
would even then have to deal with the junctions, with possible 
singularities along the paths and with possible discontinuities of 
the paths (or even of their existence) in their dependence on 
(x, /) and (,r', /'). One might hope that (e. g. for fixed (.r) and 
(a?') and decreasing t — t') the contributions of paths would turn 
out to decrease with decreasing “smoothness”. Anyhow, these 
speculations are cut off by the restrictions on the scope of the 
present paper.

It does not seem that the treatment of the present section could 
be improved by choosing other rules of correspondence than those 
of Weyl.

8. Quasi-classical distributions.

In this section, we discuss the particular role of the quasi- 
classical paths from a somewhat different point of view. To this 
purpose we use a rather queer and even treacherous representation 
of quantum mechanics, which (apparently independently and 
with quite different intentions and interpretations) has been given 
by a number of authors (cf., e. g., refs. 23), 24), 25), 12)).

To the operators a representing observables and to the statistical 
operators k representing quantum mixtures26) we relate functions 
a (p, x) and k (p, x) in such a way that the expectation value of 
the observable for the mixture can be written as

Trace (ka) = (8.01)

If we relate a (p, x) to a according to Weyl’s rule of correspond­
ence (5.03), (5.04), then we have to relate k (p, x) to k in the 
same way12), k (p, .r) is then the Wigner distribution27). For the 
special case of a pure quantum stale with wave function (.r) 
in the (^-representation, this becomes

In order to transform the equations of motion, e. g. those in 
Schrôdinger representation



30 Nr. 19

f,*(0  = -
o t ft

(8.03)

into the (p, ^-représentation, we need the expression which 
corresponds to the commutator brackets

z r ,, i- a, b] = ~(ab-ba). (8.04)
ft ft

This turns out to bc12)

where the 6 symbol denotes differentiation to the left. The equation 
of motion for the Wigner quasi-distribution function k ip, x) thus 
becomes (in Schrödinger representation)

2
— sin 
ft

ft xçt i 6 d
2 \6pidxi

6 d
6Xi d pi

k(p, x; t).
(8.06)

This stochastic equation is only then a point-to-point transfor­
mation of the type of classical statistical mechanics

0 dpi
dt

dkc ip, x; t) dxi\ 
dxi dt /

(8.07)

if the right-hand member of (8.06) reduces to12)

- (// ip, x; t), k(p, x; 0)

with the Poisson brackets

(8.08)

(a ip, x), b ip, ,r)) = a ip, x)
6 d

6xi d pi
bip, X). (8.09)

It we use Heisenberg instead of Schrödinger representation, we 
obtain a similar condition for the bracket expression of a and H 
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instead of k and II. The conditions are only satisfied for all 
operators k and a if H{p,x-,k) is a polynomial of 2nd order 
in (p) and (x).

For the two-sided operators in (8.05) and (8.09) we use the 
abbreviations

and

VI—A 6 d \
v ' \6pidxi

i
6 Xi dpt'

2 In \
- sin - s4? 
h \ 2 1 = ¥ + æ

(8.10)

(8.11)

With other rules of correspondence than those used here, 
may be different. But it is a fundamental feature of correspond­
ence12) that, for no linear rule of correspondence, the commutator 
brackets and the Poisson brackets can correspond to each other 
identically. Therefore cannot vanish identically. It is of 2nd 
order in h. If and Hi (p, x; t) in

H(p,x; t) = H0(p,x; t) + Hi(p,x; t) (8.12)

can be treated as effectively small, we can try the expansion

with

Q0_

k(p, x ; /) = JS À'(r) (p, ,r; /) 
r = 0

(8.13)

dk^ (p,x ; t)
(Ho (p, .r; t), Å’*0) (p, x; /)) 0, (8.14)

dÅ-(r + 1) (p, .r ; 0
d t

~(H0(p, x; I) , Å-(r + 1) (p, x; t))

= — {Ho (p, x; t) 9Î + Hi (p, x; 0 } k^ (p, x; t)

(r = 0, 1, . . .).

(8.15)

According to (8.14), k(<y> (p, x; /) varies with time in exactly 
the same way as a classical distribution function (cf. (8.07)) 
moves along the classical paths corresponding to the Hamiltonian 
H(p,x; t). If the classical path, which reaches (p, ,r) at the time 
t, starts at the lime t' from (p', .r'), then
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A,(0) (7), .r; /) = Å-(0) (7/, x' ; t'). (8.16)

Integration of (8.15) along this path gives

Å-* r + 1) (p, .r; / ) = A’^+D (7/, x' ; /')

.r"; /")9l + Hi (7/', .r"; t")^]k^>(p", x" ; t")

(r = 0, 1, . . .).

(8.17)

In the present representation there is just one single classical path. 
(8.16) and (8.17) correspond to the iterative solution of the 

integral equation

k(p,x; t) = k(p',x'; t') 
i*(V,  x; t) I
\ .r"; /")8t + Hi(p", .r"; /")'4? pc (/>", ,r" ; I").

I'he operators Ho91 and Hi ^3 (operating on A) again represent the 
“quantum scattering” and the “Born scattering”. The present 
equation (8.18) (for the statistical operator k) in the variables 
(/>), (-r)> more or less corresponds to the equation (6.29) (for 
the dynamical transformation operator K (t, t')) in the variables 
(.r), (.r'), I, t', as far as the latter is valid. We shall not try for 
the moment to transform (8.18) directly from one representation 
to the other.

The quasi-classical features of the present representation can 
be seen as an expression of the correspondence principle. The 
treacherous touch is that it seems to meet to a certain extent that 
pining for the good old classical theory. It cannot actually do so 
for various reasons. One of them is the fact that, in any corre­
spondence between quantum operators and quasi-classical func­
tions, the infinitesimal unitary transformations represented by 
commutator brackets in the quantum representation cannot in 
general correspond in the same sense to the infinitesimal canonical 
transformations represented by Poisson brackets in the quasi- 
classical representation. This leads to „quantum scattering” 
described by the operator 9t But even in those singular cases 
(considered in the next section) where this “quantum scattering” 
is effectively absent, there arc still other prohibitive reasons28) 12> 
which fall outside the scope of the present paper.



Nr. 19 33

9. Weak potentials.

If, as in the ease of the ordinary Schrödinger equation (4.04), 

Ho (p, x; f) is a 2nd order polynomial in (p) (and Lo (•*',  — ; 

a 2nd order polynomial in ( {[)) ’ ^ie condition (6.25) 

in section 6 and the equivalence of (7.04) and (7.11) in section 7 
can be considered as assured. One speaks of a Schrödinger 
equation with “weak potentials” (or shortly of “weak potentials”) 

if Ho(p,x;f) is a 2nd order polynomial in (p) and (x) (and 

/ dx \
Lo læ, — ; t\ a 2nd order polynomial in (.r) and I—II. We have 

seen in section 8 that, in the latter case (and only then), the “quan­
tum scattering” is absent. Then the methods of the preceding 
sections must also work out rather simply.

In weak potentials there is only one single classical path from 
(pc , t') to (x, t). Difficulties with more than one path do not 
appear. We may drop the index A. There is also no ambiguity 
in H(p,x‘,f) by the choice of the rules of correspondence.

We shall separate the “Born potential” Hi according to (6.31) 
and only consider Ko (pc, t; x', I') .

In weak potentials the expressions

lim
t —o

d2Io (x, t; x', t') 
dxt dx’j

d d2 Io (pc, t ; x', t') 
dt dxtdx'j

(9.01)

are independent of (x), (#') and therefore also

d2 Io (x, t ; x’, I’} 
dxi dx'j

Do (pc, t\x', T)2. (9.02)

If we exclude singularities, the same can be said about Do(pc,t', 
x , t'). Then all successive higher order terms (r = 0, 1, . . .) of 
(6.27) (without H i) become zero and (still apart from singularities) 
the semi-classical expression (6.29) is the exact solution of (6.03), 
(6.04), (6.05).

The Taylor expansion of Lo used in section 7 breaks off after
3 
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the 2nd order terms in the case of weak potentials, and we obtain 
the same exact solution as according to section 6. So, as is well 
known, in weak potentials no other Feynman paths yield effective 
contributions than the one single classical path.

In the representation of section 8 the time dependence of the 
quasi-distribution (/c(p, x;/) in a weak potential is actually 
described by a point-to-point transformation of the type of 
classical statistical mechanics (although Å’(p,-c;/) has not the 
proper type of a classical distribution function).

This case once more illustrates the rather singular behaviour 
of quantum systems in weak potentials, e. g., the harmonic 
oscillator29) 30) 12). In particular it shows how dangerous it may 
be without further investigation to generalize conclusions which 
have been derived only for the case of weak potentials also to 
other cases.

10. Conclusion.

The foregoing expansions arc just some examples out of a 
great variety, all with a quasi-classical lowest order term. Even 
in “weak potentials”, where this is the only term, it does not 
open the gate to the lost classical paradise. For some problems 
the expansions may be useful as practical approximation methods. 
In particular the lowest order BWK approximation works in 
some respects surprisingly well31).

As soon as singularities occur, e. g. connected with “classical 
reflections”, the situation near and beyond these points has to 
be carefully investigated, as it has been done in the stationary 
1-dimensional BWK approximation. These singularities are also 
of importance for the unsolved problem how to deal with various 
competing classical paths.

A generalization to a relativistic treatment could more readily 
be performed for the boson than for the fermion case.

CETN Theoretical Study Division,
Institute for Theoretical Physics, Copenhagen

on leave of absence from
Groningen University.
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1. Introduction.

The improved accuracy in the experimental data on super­
allowed /^-transitions as well as the determination of several new 
//-values for superallowed 0 —> 0 transitions permit a higher 
accuracy in the determination of the coupling constants in /J-decay.

We shall follow the same procedure as applied earlier1). In 
the first section, we assume that no cross terms are present, 
which, according to recent recoil investigations2), means that the 
^-interaction is a mixture of scalar and tensor coupling only. In 
the second part, we consider the evidence on the possible 
admixture of axial vector and, especially, vector interaction.

2. Vanishing Cross Terms.

In Table I, we have collected the experimental data which we 
shall use. Only recent references which have not yet appeared 
in isotope tables are included. For the evaluation of the //-values, 
the recent tables of Fermi integrals3) were used whenever possible ; 
in other cases numerical integrations were performed.

Besides the mirror transitions between nuclei with closed
x) O. Kofoed-Hansen and A. Winther, Phys. Rev. 86, 428 (1952).

A. Winther and O. Kofoed-Hansen, Mat. Fys. Medd. Dan. Vid. Selsk. 27. 
no. 14 (1953).

2) J. M. Robson, Phys. Rev. 100, 933 (1955).
Maxson, Allen, and Jentschke, Phys. Rev. 97, 109 (1955).
W. P. Alford and D. R. Hamilton, Phys. Rev. 95, 1351 (1954).
B. M. Rustad and S. L. Ruby, Phys. Rev. 89, 880 (1953) and 97, 991 (1955). 
J. S. Allen and W. K. Jentschke, Phys. Rev. 89, 902 (1953).

3) S. A. Moszkowski and K. M. Jantzen, UCLA Technical Report, no. 10— 
26—55.
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Table 1. Data for transitions used in B,x diagrams.

Decay
j-iinax
ÜMev I ft IS1!2 Single 

particle
p cor­
rected

(Weight)

O14—>N14 1.835 ± 84) 72s1 dz 44)
99.4 pct.

3300 dz 75 2 0 75

Al26—* Mg26 3.202 4- 105) 6?54 dz 106 7) 3080 dz 80 2 0 80

C134-^S34 4.50 ± 37) 1!53 dz 28) 3110 dz 120 2 0 120

I<38 j\38 5.06 z£ll9) 0s 935 dz 258) 3140 dz 400 2 0 400

n-^p .782 dz 1 12m.2 dz 1-510 *) 1220 dz 150 1 3 300

H3-^ He3 .0183 dz 2 125 .262 dz 4U) 1060 dz 40 1 3 3.5112)
3.7213)
3.6214) 370

O15-*N 15 1.735 -£ 815) 123s dz 28) 4400 dz 100 1 1/3 0.350 100

F17_^O17 1.746 dz 616) 65s dz 217) 2330 dz 80 1 7/5 1.373 100

Ca39 — K39 5.58 J- 818) 0s90 dz I8) 4650 dz 300 1 3/5 0.390 650

Se41—- Ca41 4.94 dz 519) 0s87 dz 5 2560 dz 160 1 9/7 43020)

4) R. Sherr and J. B. Gerhart, Phys. Rev. 91, 909 (1953).
J. B. Gerhart, Phys. Rev. 95, 288 (1954).
Sherr, Gerhart, Horie, and Hornyak, Phys. Rev. 100, 945 (1955).

5) Kington, Bair, Cohn, and Willard, Phys. Rev. 99, 1393 (1955). 
Endt, Kluyver, and van der Leun, Physica 20, 1299 (1954), and Phys. 
Rev. 94, 1795 (1954).
Elbek, Madsen, and Nathan, Phil. Mag. 46, 663 (1955).
T. II. Handley and W. S. Lyon, Phys. Rev. 99, 755 (1955). 
Kavanagh, Mills, and Sherr, Phys. Rev. 97, 248 (1955).

6) Haslam, Roberts, and Robb, Can. J. Phys. 32, 361 (1954). 
Green, Harris, and Cooper, Phys. Rev. 96, 817 (1954).

7) W. Arber and P. Stähelin, Helv. Phys. Acta 26, 433 (1953).
P. Stähelin, Helv. Phys. Acta 26, 691 (1953).
I). Green and J. R. Richardson, Phys. Rev. 96, 858 (1954).

8) R. M. Kline and D. J. Zaffarano, Phys. Rev. 96, 1620 (1954).
9) W. A. Hunt, Thesis, Iowa State College, 1954.

P. Stähelin, Helv. Phys. Acta 26, 691 (1953).
10) Spivac, Sosnovsky, Prokofiev, and Sokolov, Geneva Conference. A/CONF 

8/P/650 (1955).
n) W. M. Jones, Phys. Rev. 100, 124 (1955).
12) From H3 magnetic moment.
13) From He3 magnetic moment.
14) Average value.
18) Kington, Bair, Cohn, and Willard, Phys. Rev. 99, 1393 (1955).
16) C. Wong, Phys. Rev. 95, 765 (1954).
17) Warren, Laurie, James, and Erdman, Can. J. Phys. 32, 563 (1954), 

L. Koester, Zeit. f. Naturf. 9a, 104 (1954).
18) D. J. Zaffarano, priv. comm.
19) II. S. Plendl and F. E. Steigert, Phys. Rev. 98, 1538 (1955).
20) Matrix element uncertainty equated to uncertainty for Ca39 .
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shells i one nucleon, we have included the transitions of type 
0—>0, JT = 0 (no). The Fermi matrix element, |Jjl|2, for all 
the transitions can be determined from the assumption of charge 
independence of nuclear forces only21). Coulomb corrections are 
expected to be small for the light nuclei in question and will be 
neglected. While the Gamow-Teller matrix elements vanish for 
the 0^0 transitions, the matrix elements for the other transitions 
in Table I are expected to be given in a good approximation by 
the single-particle value quoted in column 6. This is supported 
by the fact that in most cases also the magnetic moment of these 
nuclei deviates only slightly from the single-particle value. A 
semi-empirical value for the Gamow-Teller matrix element ob­
tained from the magnetic moment, m, is given by1)

J \gs — gi' (D

where J is the nuclear spin, and gi and gs are the gyro magnetic 
ratios for orbital angular momentum and spin of the odd particle, 
respectively. In the following, we adopt the matrix element 
values of eq. (1) for the closed shell ± one nucleon transition. 
However, in the weight which we attribute to the transition 
(column 8), we include the deviation of eq. (1) from the 
single-particle value as an additional uncertainty besides the ex­
perimental.

We find for each ^-transition a B,x line defined by

21) E. Wigner and E. Feenberg, Rep. Prog. Phys. 8, 274 (1941).

B = /?{(1 — x') 1 \ 1 |2 + x 1 \ a |2 } (2)

with

B =
2 n3 h7 In 2 

(gs + 9r) m5c* (3)

and

x — g2Tl(g2s + 92t)> (4)
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where gs and gr are the scalar and tensor coupling constants, 
respectively. We use the conventional units where f is measured 
in units m = c = 1, and I in seconds.

numbers of the transitions are indicated.

The B,x plot obtained from eq. (2) by means of the data 
in Table I is shown in Fig. 1. In this diagram, we have also 
included the recent correlation data from the neutron decay and 
Ne19. For the neutron | 1 |2 and |^’a |2 are known and we may 
therefore write for the angular correlation parameter
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— (1 — x) ± x 
(1 — x) ± 3 x

(5)

(6)

which together with the value a = 0.089 ± 0.108, found by 
Robson2), gives

1 1 ± oc
x = - —-----  = 0.60 ±0.13. (7)

2 1 — a

This leads to the vertical line marked la in Fig. 1.
For Ne19 we may combine the //-value with the angular cor­

relation parameter a = —0.21 ±0.08 found by Maxson et al.2) 
and with the | \ 1 |2 value found from charge independence21). 
We may then solve eq. (5) with respect to B and x and find

B = A|$1|2(4/(1-3«))(1-x)
= (4600 ± 900) (1 — x),

(8)

which is a B,x line of exactly the same type as those for the 
0->0 transition, but numerically slightly inconsistent with these. 
This line is marked 19a in Fig. 1.

Using the method of least squares and applying the weights 
given in Table I, we obtain the value

B = 2787 ± 70

x = 0.560 ± .012
(9)

for the common intersection point. The errors quoted are twice 
the standard error as obtained from internal consistency of the 
data. It should be noted that the B,x plot is not internally con­
sistent inside the experimental errors quoted in Table I (cf. O14 
and Al26).

It is evident that systematic errors involved in the evaluation 
of the matrix elements may add to the errors given in eq.s (9).
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The' Coulomb corrections, although small, are errors of this 
type22). However, the sign is such that the inconsistency between 
O14 and Al26 is enlarged. Another source of systematic errors is 
the possible existence of cross terms.

3. Non-vanishing Cross Terms.

The limits available on the cross terms are derived from three 
sources: the shapes of ß-spcctra, the K-capture to positron ratios, 
and the consistency of the B,.x diagram, whereas the recoil corre­
lations are indeed very insensitive to such effects1, 23).

The limits obtained from ^-spectrum shapes have been sum­
marized by Mahmoud and Konopinski24) and by Davidson and 
Peaslee25). Also recent He6 spectrum measurements should be 
taken into account26) as wsll as measurements of the spectra of C10 11 * 
and F17 27). The limits in the Gamow-Teller interference term is 
quite well established in this way with the result |.7a/<7t| < 0.05 
based especially on the He6 spectrum. Here, gA is the axial 
vector coupling constant. Information about the Fermi interference 
term was based solely on the N13 spectrum and the statements 
made on the vector coupling constant gv are therefore somewhat 
more uncertain. Konopinski and Mahmoud conclude that | gv/gs | 
< 0.20. The spectra of C11 * * and F17 do not permit to narrow this 
limit (cf. Fig. 4).

(10)

22) W. M. McDonald, Princeton thesis 1955.
23) O. Kofoed-Hansen and A. Winther, Phys. Rev. 89, 526 (1953).
24) H. M. Mahmoud and E. J. Konopinski, Phys. Rev. 88. 1266 (1952).
25) J. P. Davidson and D. C. Peaslee, Phys. Rev. 91, 1232 (1953).
26) A. Schwarzchild, priv. com.
27) C. Wong, Phys. Rev. 95, 765 (1954).
2S) R. Siierr and R. II. Miller, Phys. Rev. 93, 1076 (1954).

The K capture to positron emission ratio for Na22 studied 
by Sherr and Miller28) leads to the estimate gA/gr — — 0.01 ± 
0.02.

These limits for the Fierz terms are, in Fig. 2, expressed as 
limits on the interference term constant bp and bar given by

2 y .75 u
2 i 2 ’9 s + <7u
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limits from K capture to positron ratio of Na22.

limits from spectral shapes.

limits from consistency of (1953) B,x plot.

from consistency of (1956) B,x plot.

and

(H)
where

y = |/1-(«Z)2. (12)

limits

Fig. 2. The areas in the bF, bGT plane which are consistent with experimental data. 
B,x values in the points A to G are given in Table II.

In this figure, we also show the older limits on possible öf, bGT 
values as derived from internal consistency of the B,x diagram1). 
In using the B,x diagram for such investigation we redefine

and

B = ft{(l-x) (1 ± bF<l/IV>^p)|Sl|2 

+ x(l ± bGTV/W>Av)\\o I2} (13)

9t + 9a

9s + 9v + 9 a + 9r
x (14)
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where the + sign in (13) applies to ß~ decay and the — sign to 
ß+ decay.

With the new /’/-values of Table I, one obtains a much narrower 
region which is also given in Fig. 2. The limits correspond to 
twice the standard deviation as observed from internal con­
sistency of the B,x diagram and coincide very closely with the 
points where one or more of the experimental lines show a definite 
inconsistency with the common B,x point in question inside the 
experimental errors. It is noted that inside the region the 0 -> 0 
transitions show’ consistent /’/-values contrary to the case of no 
interference terms discussed above. Also no inconsistency with 
the neutron recoil correlation occurs, and the Ne19 correlation 
is in no worse agreement here than in the case of absence of 
Fierz terms.

Table II. B,x values at the /?f, bcT points indicated in Fig. 2 
and at bF = bGT = 0.

bp, ^GT P°int B x

A...................................... 2750 0.553
B...................................... 2640 0.552
C...................................... 2550 0.535
D...................................... 2510 0.522
E...................................... 2630 0.518
F...................................... 2720 0.539
G...................................... 2620 0.537
0,0.................................... 2787 0.560

Of course, B and x are now functions of 1)f, bGT and wre have 
given, in Table II, a sequence of values in the center and at the 
border of the region of consistency. It is seen that the variations of 
B and x are much larger than the uncertainties found for fixed 
values of bF and bGT (cf. eq.s (9)). In Fig. 3, we give the B,x 
plot corresponding to the most probable value of (bF, bGT) = 
(0.29,0) and, in Fig. 4, wre show the Fierz plots of the spectra 
of C11 and F17 derived under the assumption that bF = 0.29 
and using the matrix element obtained from charge independence 
and the B, x point of Fig. 3.

If one includes the Coulomb correction as recently calcu-
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lated22) in the cross term investigation, this correction tends to 
lower B and x and to make 0f larger.

It is seen that the available material is consistent with the 
assumption of the presence of a small amount of vector coupling, 
but it should be remembered that the conclusion from the B,x 
plots is on the limits of the uncertainties in the experimental data 
as well as on the theoretical evaluation of the matrix elements.

It is interesting to note that recent experiments29) indi­
cate a small difference between the spectra of Al25 and Al26

29) Elbek, Madsen, and Nathan, Phil. Mag. 46, 663 (1955).
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Fig. 4. Fierz plots of the C11 and F17 spectra observed by Wong27) using bF = 0.29 
and bGT = 0.

measured under identical conditions. This could be ascribed to 
the above amount of cross terms even allowing for the branching 
in the Al25 decay. However, the accuracy in the spectra hardly 
permits definite conclusions. Thus it is to be hoped that 
further comparisons of ß-spectra of neighbouring 0 -> 0 and 
mirror transitions will be carried out. Such transitions show nearly 
the same maximum energy, and difference spectra might there­
fore be independent of scattering troubles which usually prevent 
accurate information about cross terms.

Institute for Theoretical Physics 
University of Copenhagen, Denmark.

Indleveret til selskabet den 4. juni 1956. 
Færdig fra trykkeriet den 26. oktober 1956.



Maternatisk-fysiske Meddelelser
udgivet af

Det Kongelige Danske Videnskabernes Selskab
Bind 30, no. 21

Mat. Fys. Medd. Dan. Vid. Selsk. 30, no. 21 (1956)

QUANTUM MECHANICS IN 
GENERALIZED HILBERT SPACE

BY

VACHASPATI

København 1956
i kommission hos Ejnar Munksgaard



CONTENTS
Page

1. Introduction.................................................................................................................... 3
2. Analogy between Relativity Theory and Quantum Mechanics..................  4
3. Coordinates in Hilbert Space and Generalization of/;.................................. 6
4. Definitions of Vectors and Tensors..................................................................... 7
5. Covariant Differentiation............................................................................................ 9
6. Lowering and Raising of Suffixes; Relation between the Affinity and

the Metric......................................................................................................................... 13
7. Curvature Tensor......................................................................................................... 15
8. Condition for Flat Space.......................................................................................... 16
9. Equations of Motion.................................................................................................. 19

10. Relation between the Old and the New Hamiltonians.................................. 20
11. Expectation Values and Equivalence of the Old and the New Theories 21
12. Conclusion and Outlook............................................................................................ 23
Appendix. Contracted Forms of the Curvature Tensor........................................ 25
References................................................................................................................................ 28

Synopsis.
An attempt is made to generalize the Hilbert space of quantum mechanics 

in analogy with the development of the general relativity theory from the 
theory of special relativity. The state vectors, ip, ïp, of quantum mechanics are 
found to be analogous to the four-velocity, v^, of relativity and therefore co­
ordinates, /, are introduced, corresponding to the coordinates xil of a par­
ticle, such that the time derivatives of / and / equal ip and ÿ. The metric p, 
used in constructing the probability density, is supposed to be a function of / 
and /. The unitary transformations of the usual theory are replaced by quite 
general transformations y and /. A tensor calculus for this generalized Hilbert 
space is developed and equations of motion for the states and the dynamical 
variables are postulated as generalizations of the usual Heisenberg equations when 
the ordinary time differentiation is replaced by invariant time differentiation. 
In this way a non-linear theory is obtained. However, the expectation values 
of the dynamical variables are found to be the same in the new theory as 
in the old, showing that this theory cannot give any physical results different 
from those of the usual theory.

Printed in Denmark 
Bianco Lunos Bogtrykkeri A-S



1. Introduction.

he present-day quantum mechanics has been successful in
1 explaining a large number of phenomena, particularly those 

involving electrons and electromagnetic radiation. It has, however, 
not been so successful in dealing with other particles. The dis­
covery of several new particles in recent years seems to indicate 
that the basis of the present theory ought to be broadened. In an 
ideal theory, one should be able to describe the various particles 
as possible states of one system. It is probable that this can be 
achieved by constructing a non-linear theory in which the prin­
ciple of superposition of states is valid only as a first approxima­
tion.

Some attempts in this direction have recently been made, 
notably by Schiff (1951 a, b, 1952), by Thirring (1952), by 
Heisenberg (1953,1954) and by Heisenberg, Kortel and Mitter 
(1955), who introduced non-linear terms into the wave equations. 
The addition of such terms is, however, an entirely arbitrary 
procedure and therefore unsatisfactory. These attempts can there­
fore be considered only as phenomenological until they have 
some acceptable principles as their basis.

A well-known example of a non-linear theory in classical phy­
sics is the theory of general relativity. The special relativity theory 
allows only linear transformations of the coordinates; the general 
theory abandons this restriction and takes quite general coordi­
nate transformations into account. This leads in a fairly natural 
way to the explanation of the gravitational phenomena. But gra­
vitation plays only a very minor role in atomic and nuclear phe­
nomena and therefore the theory of general relativity in itself is 
not of much interest to the atomic physicist. However, one can

1*
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still learn a great deal from it. Its methods may, for instance, be 
applied to the construction of a more general Hilbert space in 
which the unitary transformations of the usual theory can be 
abandoned in favour of more general transformations. This paper 
deals with exploring this possibility. It is shown here that such a 
generalization is possible and leads, as expected, to non-linear 
wave equations in quantum mechanics.

The development outlined below is similar to that of the ge­
neral relativity theory. However, it is hoped that this paper can 
be understood, at least in its main line of arguments, without pre­
vious familiarity with general relativity or Ricmannian geometry.

2. Analogy between Relativity Theory 
and Quantum Mechanics.

We here start by discussing a Hilbert space of finite dimen­
sions, A7. A system in quantum mechanics is completely spe­
cified when the components, ipm, of its state vector are known in 
all the N mutually orthogonal directions in Hilbert space. The 
state ip is usually normalized to unity, which means that

v
= 1 . (2.1 )

m= 1

Here ipm is the complex conjugate of ipm. One could, if one 
wished, choose a different normalization for ip, but normalization 
to unity is most convenient. The unitary transformations are 
such that they leave (2.1) invariant. Indicating the transformed 
variables by primes, we have

= ^ÿmipm = 1. (2.2)
m vi

If we define
W = V™ (2.3)

we can write (2.1) as
^ipmVm = 1. (2.4)

771

Let us denote a general dynamical variable by A with com­
ponents A— n. When ip goes over to ip' by means of a unitary 
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transformation, A goes over to A' such that the expression 
remains invariant:

m, n
2 Vn' A'Sn V«' = Sv’n-^nVn- (2.5)

m, n m, n

The reason why we have put a bar over m in A—n is that this 
suffix is contracted with ipm while the other suffix, n, which is 
without a bar, is contracted with ipn.

With the help of the above notation for the components of a 
dynamical variable, we can write (2.3) as

y’m = (2-6)
n

where is the unit matrix.
In special relativity we meet an analogous situation. If de- 

dx^
notes the four-velocity, ---- , of a particle (t is the proper time,
c = 1), we have

^=1. (2.7)

Here the covariant components, v^, are related to the contrava­
riant vector n" by means of the metric gv/Jz

where

If one expressed as functions of some other parameter s, one 
would get another factor instead of 1 on the right-hand side of 
(2.7). However, it is most convenient to have the normalization 
1 by choosing the independent variable as r.

We now’ notice a formal similarity between the equations (2.4) 
and (2.6) of the quantum theory, on the one hand, and the equa­
tions (2.7) and (2.8) of relativity, on the other. The analogue of 
the equation (2.5) in relativity would merely specify the trans­
formation properties of a second rank tensor.



6 Nr. 21

Because of this formal similarity between the relativity and 
the quantum theories, we can say that the quantum state y with 
components corresponds to the relativistic velocity p with 
components v^.

3. Coordinates in Hilbert Space and Generalization of

The fact that ipm corresponds to the velocity v,L suggests that 
we introduce coordinates such that, by definition,

(3.1)

This relation is analogous to the definition

The 2™’s do not form a vector, just as x/l does not constitute a 
vector in relativity. The upper position of the index in in %m is 
inserted only for convenience and does not imply that it is a 
vector.

From (2.4) and (3.1) it follows that

d%wtZ%w = cft2, (3.2)

where, according to (2.6),

d%m = £ dXn Vnm- (3.3)
n

(3.2) can also be written as

2? Vmn dXm dXn = dt'2
m, n

(3.4)

which is analogous to the relativity relation

y guv clx/l dxv = dr2, 
fl, V

In special relativity the p^/s are constants given by (2.9). 
The transition from this theory to the theory of general relativity 
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consists in abandoning the constancy of and allowing them 
to be functions of the coordinates xf/. In view of the formal si­
milarity between the equations (3.4) and (3.5), it now suggests 
itself that in quantum theory we regard as functions of 
Z and

Vmn Vmn Cz> z)- 0-6)

4. Definitions of Vectors and Tensors.

We now assume that quite general transformations of / and 
/ are possible such that the transformed coordinates %m' de­
pend on x1, x2, x3, %N and similarly xm' depend on 
>yl /y2 /y3 /yN •

m = 1 . . . N.

(4.1)

Note that xm' does not depend on /r, nor does xm' depend on /r. 
From (4.1) it follows that

and

(4.2 a)

(4.2 b)

We now follow the usual convention that, unless otherwise stated, 
when a suffix occurs once below and once above, summation 
over it will be understood.

We define a ‘contravariant vector’ as one whose components 
transform like dxm and a ‘conjugate contravariant vector’ as one 
whose components transform as d^m. Sometimes, we distinguish 
vectors of the kind dxm by calling them ‘ordinary’ as contrasted 
with conjugate vectors. Thus, an ordinary contravariant vector, 
Am, transforms as

dr™'
___ j\n

Qyn
(4.3 a)
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and a conjugate contravariant vector, Am, as

_ dvm' -Am' = -t- An. (4.3 b)

We put a bar over the suffix which transforms as a conjugate 
vector, while the suffixes which transform as ordinary vectors 
will be left unbarred.

From (4.2 a, b) and (3.1) it foil ows that ip is an ordinary and 
ÿ a conjugate contravariant vector.

Besides contravariant vectors, we also have covariant vectors. 
An ordinary covariant vector, Am, is defined to transform as

(4.4 a)

The conjugate covariant vectors transform as

(4.4 b)

These definitions are arranged so that, by contracting the indices 
of a covariant vector and a contravariant vector of the same kind, 
we get an invariant result:

A'm Bm' = Am Bm (4.5 a)

(4.5 b)

Tensors of higher ranks can be defined in exactly the same 
way as in the ordinary tensor analysis. Thus, a second rank 
tensor Amn transforms as 

Am '
n

d%m' d%b 
d%a dxn'

and a tensor Amn transforms as

A" 4«
9/« d/»' 6

(4.6 a)

etc.
(4.6 b)
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From (3.4) and (4.2 a, b), it is clear that, if we have

dmn
d%a dxb

dyn' (4.7)

the expression (3.4) will be invariant. We can say that is a 
covariant tensor of the mixed kind. It is easy to see that A—n in 
(2.5) is also a covariant tensor, of the mixed kind.

Besides being a tensor, the equation (3.4) shows that is a 
Hermitian matrix, i. e.,

Vmn ^Inm • (4.8)

5. Covariant Differentiation.

If (p is a scalar, i. e., if
<P = <P>

it follows that
d(p' dtp d%a 

d%™' ~ d%™' ’ (5.1)

Comparing (5.1) with (4.4 a) we see that the gradient,

covariant vector, 
covariant vector.

Similarly one can see that „ is a 
dX

conjugate

Örn

Let us now consider the 
on using (4.3 a),

gradient of a vector Am. We have,

dAm' d T dym'--------= -------- y/
dxn> d%n' ^Xa

d%b_ d 
d%n' d%b

(5.2)

d%m' d%b d Aa 
d%a d%n> d%b

d%b d2%m' 
d%n' d%b d%a

dAmComparing (5.2) with (4.6 a) we see that------ would have been a
fz”

tensor if the last term in (5.2) were absent. Because of its pre-
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dAm .
sence,----- is no longer a tensor.

therefore introduce an ‘affinity’ I™

As in general relativity,

such that, by definition,

we

(5-3)

is a tensor. We call A™n the covariant derivative of Am and 
denote it by a semi-colon. It is evident that /’^cannot be a tensor. 
We shall find its transformation properties presently.

Since is by definition a tensor, we have, on using (4.6 a),

dv™’ dvb

When we substitute the 
in terms of Ar by using

r„, = V' W dX‘ r„ , ar- 
d%a d%n> d%r' bc d%a d%n' d%r'

n d%a d%n' ’b'

definition (5.3) of A™n and express Am> 
(4.3 a), we get

This is precisely the transformation law for F™r in general rela­
tivity. Note that, because of the second term in the right-hand 
side of (5.4), r™r is not a tensor.

It is easy to sec that, since the last term in (5.4) is symmetric 
in n and r, F™r will remain symmetric in all coordinate frames 
if it is chosen symmetric in one. This, of course, does not proue 
that is symmetric. In this paper we shall take it to be sym­
metric for the sake of simplicity.

We have seen that the gradient of a scalar is a vector. We 
can therefore say that the covariant derivative of a scalar is the 
same as the ordinary derivative

d(p
(5.5)

Assume now that the usual product rule for differentiation 
holds also for covariant differentiation
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(/V>;n = f-, n 9 + f 9-, n

so that, in particular,

Since Am Bm is a scalar, we get from (5.5)

(Am B )V x m-' ; n
dAm dBm
 Bm + Am ------- . 
d%n---------------d%n

(5.6)

(5.7)

When we substitute this and (5.3) in (5.7), we find that

4
m; n (5.8)'

This provides the ride for differentiation of covariant vectors.

The rules for differentiating conjugate vectors with regard to
%n are similar. One has there to use an affinity which is the com-
plex conjugate of r™r.

dA™
(5.9)Bm~ = ------

’n
4- 4« rm_

1 an

dB~
Q-n b m n ’ (5.10)

where
rm __
1 r n

rm
1 rn • (5.11)

So far the discussion has been quite analogous to that of the 
usual tensor analysis. Let us now consider the differential coef­
ficient of a conjugate vector with respect to We have

dAm' d W1' <S1- u
d%n'

dXb d ■d%w'
d%n' d%b dxa

d%b d%mf dAa 
d%n> d%a d%b
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In getting the last step we have made use of the fact, stated in 
the equation (4.1), that does not depend on so that

d
(5.13)

From (5.12)
dAm .

we sec that------is a tensor and thus there is no
d%n

need of introducing any affinity here. Alternatively, we can say 
that the covariant derivative of Am with respect to %n is the same
as the ordinary derivative

dAm
d%n '

(5.14)

We summarize here the rules for covariant differentiation:

The differentiation rules for tensors can be obtained from 
(5.15) and (5.6). A tensor like Amn transforms like the product 
of two vectors Bm and Cn. Therefore its differentiation law ought 
to be the same as for the product BmCn. This gives
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(5.1C>)

The rules for differentiating with regard to are quite similar. 
One can easily write down the differentiation rules for tensors of 
higher ranks.

6. Lowering and Raising of Suffixes; Relation between 
the Affinity and the Metric.

We use the metric to lower the indices of tensors in the 
following way:

= (6.1a)
and

(6.1 b)

From (6.1 a) it follows that

(6.2)

We now assume that

r!mn ; i' 6 • (6.3)
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As one can see from (6.2), this enables us to perform the opera­
tion of lowering the suffixes inside the differentiation sign, viz.,

A = A™ 77-n; r ; r Imn

From (5.16) it follows that the equation (6.3) means

(6-4)

Let us now introduce the inverse of We denote it by tjmn :

(6.5 a)

(6.5 b)

where I is the unit matrix so that I™ equals 1 if in = n and is 
zero otherwise. One can easily establish the tensor character of 
T/mn and of I™'. The matrix )fnn can be used to raise the suffixes 
of covariant vectors and tensors in a way analogous to (6.1 a, b).

If we multiply (6.4) by r/sm, we get

or

(6.6)

We have thus expressed the affinity in terms of the fundamental 
metric Note that the right-hand side of (6.6) is not, in gen­
eral, symmetric in n and r. If we want rsnr to be symmetric, 
we must impose some restrictions on the metric; namely, the me­
tric has to satisfy

drj'rnn ^^Imr /n n \
 = ------- . (6. / a) 
d%r------ Q?n

By taking the complex conjugate of (6.7 a) and using the fact 
that is a Hermitian matrix [see (4.8)], we also get

^Inm _  ^llrm
d%r ~ d%n ‘

(6.7 b)
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The equations (6.7 a, b) show that we can write

(6-8)

where (p is a real local scalar.

Taking the complex conjugate of (6.6) and using (5.11) and 
(4.8), we find

(6-9)

7. Curvature Tensor.

The expression (6.6) looks very different from the usual ex­
pression for affinity in relativity theory. However, it will be 
shown that, by using a suitable notation, we can put it in a 
form similar to that in relativity theory.

Let us define

In general, let us write Nni instead of m wherever the latter 
occurs. Thus, in our new notation,

and
+ m

rlmn ViN + m'fn'

We also define
—when p>N,v< N

0 in all other cases

(7-2)

(7-3)

where, in this section, the Greek indices take the values 1,2.. .2 N. 
The invariant line element (3.4) becomes

X d^1 V d%V = dt*
/n, v

(7.4)

which is similar to the expression (3.5) of the relativity theory. 
One can easily verify that the expressions (6.6) and (6.9) for the 
affinity can now be written together as
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(7.5)

usual expression inthe spaee. Thereal

(7.6)

(7.5)

(7.7)

and un-

(7.8)

(7.9)a%5

theory1.

1
9

If we write (7.7) in our previous notation, using barred 
barred suffixes, we lind

DlJ VO

drmnr

to
here defined as

The complex conjugates of (7.8) and (7.9) also hold.
Thus Bmnrg is essentially the curvature tensor in this

(tv — v) wpen M < 2V, v > N

0 in all other cases.

As in the tensor analysis of real space, the expression 
gives rise to the curvature tensor

= 0, b^Fs = 0,

jOl _ ___ _ JQl VO

VQa

8. Condition for Flat Space.

One can easily show that the affinity can be made zero at 
any one given point, say at the origin, by a suitable choice of the 
coordinate system. In fact, not only the affinity r™r, but also its

1 I am thankful to Professor C. Møller for first pointing this out to me. The 
expression (7.9) can also be found directly from the previous formalism (without 
introducing the notations (7.1)-(7.3)) by extending the idea of parallel displace­
ments to the complex space. (Private communication).

See appendix for the contracted forms of the curvature tensor.
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gradient
dTm
—— can be made to vanish at any one point. This can 
d%s

be explicitly verified by carrying out the transformation

(8.1)

where
(8.2 a)

and

o

Bm rnrs

anr wr/O

dysÄ -Io

Note that, due to the relation (6.7 a), the right-hand side in 
(8.2 b) is symmetric in n, r and s, as it should be because (8.1) 
shows that Bmnrs is symmetric in these suffixes.

However, the affinity and its gradient vanish at one point only; 
they do not vanish even at a neighbouring point unless the cur­
vature tensor (7.9) vanishes. To see this, we have merely Io ex­
pand r™r in a Taylor series about the origin:

(8.3)

r r 1

dXs d%s
+ • • •

0

|o d%s k . . .

Hence, it is a necessary condition for the vanishing of the affinity 
that the curvature tensor must vanish :

(8.4)

As the form (7.7) closely resembles the expression for the curva­
ture tensor in real space, it is not difficult to see that (8.4) is also 
a sufficient condition for the vanishing of the affinity in some 
coordinate system.

From (6.6) and (6.9) we see that, if the affinity vanishes, 
are constants independent of /, In other words, the space is 
then Hat and we can take, by correspondence with the usual 
quantum theory,

Mat.Fys.Medd.Dan.Vid.Selsk. 30, no.21. 9
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Vmn ^mn<

where I is the unit matrix, i. e.,

1 if m = n 
^mn '

O if m n.

(8.5)

(8.6)

From the above discussion it follows that, if our theory is to 
be essentially different from the usual quantum theory, we must 
have a curvature tensor which is not zero.

9. Equations of Motion.

In general relativity theory, the equations of motion of a par­
ticle in a gravitational field can be obtained by the variation of
the Lagrangian

dx/l dxv 1/a
9/lv dr dr dr

with respect to ^(r). We assume that we can obtain the equa­
tions of motion for %(/) in our quantum theory by a similar va­
riational principle. As the Lagrangian we take

L = rlmn (X » Z)
d%m d%n

dt dt

(9.1)

and make in and % independent variations that vanish at the 
end points to and ti.

In this way we easily obtain

and

Dw™
= 0

dt
(9.2 a)

(9.2 b)
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d%r dipm d%r 
dt d%r dt

[ see (5.15) ]

(9.3 a)

and similarly

(9.3 b)

The equations (9.2 a, b) now replace the equations

and

dcpm
dt

(9.4 a)

(9.4 b)

of the usual quantum theory in the Heisenberg representation. 
[To denote the states of the usual theory we have here used 
cpm, <?m to distinguish them from y, ÿ» of the present work.]

Besides (9.4 a, b), we have also equations for the dynamical 
variables, Ft

0-5)

where the square bracket stands for the commutator. We replace 
these equations by the covariant ones

2*
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Here

öZr
pa­

il
pm pm

ar a

'Ixr + ffFy
dl d%r

(i%r 
dl

[see (5.1 6)1 (9.7)

It will be shown below that the Hamiltonian H of the new theory 
is, in genera], different from the Hamiltonian H of the old theory. 
This is the reason why the two Hamiltonians have been written 
in different ways in (9.5) and (9.6).

It may be remarked that, when the spaee is flat so that the 
affinity vanishes, the equations (9.2 a, b) and (9.6) of the new 
theory reduce to the equations (9.4 a, b) and (9.5) of the old 
theory.

10. Relation between the Old and the New Hamiltonians.

If we replace F by H in (9.6), we get

or

or

(10.1)

[see (9.7)]
(10.2)

fl’“„(0=tf"„(0) + $‘H“(,r«r-/™H»B)r<«- (10.3)

Let us understand by 0 the instant at which the geodesic coordi­
nates are introduced such that

(o) - o, (10.4)

[see section 8]. At this instant the equations (9.6) and (9.2 a, b) 
of our theory go over into the equations (9.5) and (9.4 a, b) of 
the old theory. We can therefore put
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(0) - H'\, (10.5)

where Hmn is the old Hamiltonian. Then (10.3) becomes

H“‘n = «“»+$' («“a Vr <"• UO.ß)

This shows that, as the affinity does not vanish everywhere on 
the track, the Hamiltonian H is, in general, different from the 
Hamiltonian H.

11. Expectation Values and Equivalence of the Old and 
the New Theories.

The expectation value of an observable F in this theory is 
given by

<F> = ym Fmnyn. (11.1)

We shall now show that this is the same as the expectation value

— (pm Fmn^Pn , (11.2)

where cpm denotes the states of the usual theory [cf. (9.4 a, b),
(9.5)1  and the suffix ‘u’ denotes the ‘usual’ theory to distinguish 
(11.2) from (11.1). To show this, we first remark that, in general, 
the expectation values (11 1) and (11.2) depend on time. At the 
instant 0 at which we introduce the geodesic coordinates [cf. sec­
tions 9 and 10], we can take both of them to be equal:

<F>(0) = <F>«(0). (11.3)

To get the expectation value at any later instant /, we make the
Taylor expansion

<F>(/)
d<F>

F> (0)

(11.4)

0
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N ow

d<F> 
dT

D<F>
dt

[because <F> is a scalar]

— V’w using (9.2 a, b)]

= [H, F]mn y)n [using (9.6)].

At the instant 0, all the variables of the new theory go over into 
those of the old theory, giving

d<F>' i
— — (fm li

[H, F] mn tyn ,

Similarly, one can easily see on using (9.2 a, b), (9.6), and (10.1), 
that 

where
[H.F]'”’ = [H, [H.......[H.F]]...].

----------------- +V terms 

Thus (11.4) becomes

<P>U)

(11-5)

(11.6)

(11.7)

This, however, is precisely the expression that one would obtain 
also from (11.2). Hence

F> (/) = < F>m(Q.

Thus, the expectation values of all dynamical variables will be 
the same in the new theory as in the old1. Note that this result 
does not depend on the curvature tensor.

1 I am thankful to Professor C. Møller for pointing out in a letter to me 
this equivalence of the old and the new theories.
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12. Conclusion and Outlook.

We have tried to make a generalization of the Hilbert space 
by introducing the variables /, /, and admitting quite general 
transformations of these ‘coordinates’. It was hoped that this 
might lead to a more general theory than the present quantum 
mechanics which allows only linear transformations of states. The 
result of the last section, however, shows that, irrespective of 
whether the space is curved or not, the physical results of the 
new theory will be the same as those obtained from the old theory. 
We therefore conclude that no essential generalization of quan­
tum mechanics can be obtained, at least in the framework of 
the present formalism, by introducing a curved Hilbert space.

There are, however, a number of questions that need clarifi­
cation and may provide further insight into the theory. The most 
important of them is whether we can assign any physical signi­
ficance to the variables /, /. It would be interesting also to 
understand the significance of the relation (3.4) in which the arc­
length in /-space is identified with the physical time, t. Besides 
these questions of interpretation, there are also some mathema­
tical points that need examination. In section 9, the equations 
(9.2 a, b) for the time-variation of the state vectors were derived 
by means of a variational principle, (9.1). However, the equation 
of motion, (9.6), for the dynamical variables was simply postu­
lated as a generalization from the usual quantum theory. Il would 
be of interest to investigate whether we can arrive at (9.6) also 
by means of a variational procedure. This equation is primarily 
responsible for the equivalence of physical results in the old and 
the new theories, and, therefore, an alteration here is likely to 
affect the conclusion that we have reached above. If, for example, 
there is a term containing the gradient of the Hamiltonian in
(9.6),  the latter will still be a possible generalization of (9.5), 
but the equivalence of the old and the new theories will no longer 
hold. Again, we have confined ourselves to the case of a symme­
tric affinity in this work. But, from section 6 it will be clear 
that a symmetric affinity does not appear to be the most natural 
thing to have in the complex space. It would therefore be worth­
while to investigate whether a non-symmetric affinity can lead 
to any new results. Finally, we have treated the case of a Hilbert 
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space of finite dimensions, in quantum mechanics, however, we 
have to work in an infinite dimensional space. A generalization 
of this work to the latter case will be of interest, at least to the 
mathematician, and perhaps also to the physicist.

Acknowledgments.

I am grateful to Professor C. Møller, Institute for Theoreti­
cal Physics, University of Copenhagen, for some very useful 
comments on this paper. I am also indebted to Professor M. A. 
Preston for extending to me hospitality at the McMaster Uni­
versity, and to the Canadian National Research Council for the 
award of a fellowship which enabled me to visit Canada.



Nr. 21 25

Appendix.

Contracted Forms of the Curvature Tensor.

From the curvature tensor (7.9) we can, apparently, obtain 

two tensors of the second rank, viz.,

and

(A. 1 )

(A. 2)

We here obtain explicit expressions for these tensors in terms of 

the metric r; and show that they are essentially the same.

We first consider Rsr.
From (6.5 b) we note that

dXs
I)

or

[using (6.6)]

d%s d%r dXs ^Xr

,.»S ™
d%s d%r d%a d%m

[using (A. 3) in the first (6.7 a, b) 

in the second]

(A. 3)

(A. 3)
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where

(A. 5)

We can also derive an alternative expression lor if we use

(A.6)

where Mnm is the cofactor of in the determinant | r/„b | = |r;|. 
We first note that

(A. 7)

Now, from (6.6) we notice that

Substituting this in (9.13) we tind

Hence

d2
[log I d |] •

If we contract (A. 9) again, we gel

(A. 8)

(A. 9)

(A.10)
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now look at (A. 2). We getLet us

[using (6.6)]
9zrJ

d %s d%r-

[using (A.3)]
Therefore

d %s d%r

■= —T]rs

= — rirs

= —rjrs

nrs Bm-'/ nrs

"km1! Dnrs

d %s ^xr

rimady‘an_ d
— __^rs-------.

1

which is precisely the expression (A.4) when we replace k by s 
and n by r and use suitable dummy indices. Thus

/? = n-tlsr Ism r

and hence the curvature tensor gives rise to only one tensor 
of the second rank.
Physics Department, McMaster University,

Hamilton, Ontario, Canada.

I
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Synopsis.
The narrow /^-absorption bands of Pr (III), A'd (III), Sm (III), and Gd (III) 

are shown to be shifted ~l°/0 towards lower wave numbers in anion complexes, 
compared to the aquo ions. This effect is interpreted as a decrease of the para­
meters Fk of electrostatic interaction between electrons in a partly filled shell. 
The ratios F2:F4 and F4:F® are not freely adjustable, but slightly depend on the 
radial wave function. It is possible to extrapolate from the values of Fk to the 
average radius r0 of the partly filled shell, which is somewhat smaller than the 
ionic radii of trivalent lanthanides. The decrease of F^ is shown to be caused by 
partly covalent bonding. The broad 4 /-> 5d transitions of Ge (III), which occur 
at lower wave number in the aquo ion than in gaseous Ce+ 3 is further shifted in 
anion complexes where the crystal field also gives varying splittings of 5d. A weak 
band of the Ce (III) aquo ion possibly originates from a rare geometrical configur­
ation. The absorption spectra of CeCZ3 in C2II5()H and HCl are reported, and the 
complex equilibria discussed.

Printed in Denmark 
Bianco Lunos Bogtrykkeri A-S



he absorption spectra of transition group complexes with 
± partly filled d-shclls can be described by crystal fields of 

different strength and symmetry, acting on the terms of the ga­
seous ion, known from atomic spectroscopy.50 Tanabe and Su- 
GANO,88 Owen,67 and Orgel66 introduced the idea that the term 
differences are smaller in complexes than in the gaseous ions. 
This is equivalent to a decrease of the parameters of electrostatic 
interaction F*  as defined by Condon and Siiortley.9 Schäffer77 
and the present author48’50 found that decreases more in 
anion complexes such as tris-oxalato or hexa-chloro complexes 
than in complexes with neutral ligands such as water and amines. 
Representative values of the decrease of F*  are 8—12 °/o in man­
ganese (II), 15—30 °/o in nickel (II), 20—50 °/o in chromium 
(III), and even more in cobalt (III) and rhodium (III) complexes. 
There is a rough correlation between the decrease of F*  and 
the crystal field strength (Fi — F2) in octahedral complexes,49 
—about 2 °/o for each 1000 /<.*  The present paper is a report 
on investigations into the much smaller decrease of Fjc in com­
plexes with partly filled /’-shells and the behaviour of [AT] 4/’-> 
[AT] 5d transitions in cerium (III) complexes. Absorption spectra 
of complexes in solution at room temperature are measured.

Praseodymium (HI) Complexes.

The four visible band groups32 of Pr (III) are caused bv 
transitions from 3H4 to 1Z>2, 3Po> 3Pi, and 3/J2, respectively. The 
first group is rather broad in solution, while the three other groups 
in the blue are each represented by a single maximum of the

* The unit of wave number cm-1 will be called K ( = Kayser) in this paper 
in accordance with the proposal made by the Joint Committee for Spectroscopy, 
1952.

1*
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aquo ion. These bands are shifted ~ 1 °/o towards lower wave 
numbers in the anion complexes in solution as seen from Table 1. 
The absorption bands of the nitrogentriacetate and citrate com­
plexes are split into several components (but it is not certain that

aquo ions. The percentage decrease is given as a function of the atomic number for 
A-Pr2()3, the C-oxides, anhydrous bromides and chlorides, and the solutions of 

citrates, tartrates, and ethylenediaminetetraacetates studied here.

these spectra correspond to a single complex, with a definite 
geometrical configuration, even though the spectra are indepen­
dent of the concentration of the ligand, when it is present in a 
large excess). However, average shifts ~ 1 °/o can also be esti­
mated in these complexes. Birmingham and Wilkinson4 found a 
larger shift, ~ 3 °/o, relative to the aquo ion in the strongly split 
band groups of praseodymium (III) tris (cyclopentadienide). 
Figure 1 illustrates the relative decrease of this red shift of the 
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absorption bands of several compounds with increasing atomic 

number in the series Pr(III), .Vd(IlI), Sm(III), and Gd(III). 

Ephraim and Bloch12-15 studied the absorption spectra of solid 
praseodymium (III) salts and found in the anhydrous halides a 

red shift, amounting to ~ 2 °/o of the wave number, while the 

solid hydrates and ammoniaeates exhibited much smaller red 

shifts. In only one case, the ammonium double nitrate, the shift 

was found towards higher wave numbers (and the percentage 

is then reckoned as negative in Table 1). Most other praseody­

mium (III) salts with oxy-anions exhibit moderate shifts towards 

the red. An extreme case is represented by Pr^Os, where the 

shift can exceed 5 °/o- Boulanger7 later studied Pr(III) and 

found a similar large shift in some forms of Pi-2(Mo()a)3. The 

existence of more crystal forms of P12O3 (A-type stable at high 

temperatures, C-tvpe at low) was established by Goldschmidt.26 
Since the local environment of oxygen atoms around a praseo­

dymium (III) ion in C-Pi^O^ consists of two types of defect 

cubes97 (two of the eight places are empty) and in A- Pr^O^ 
consists of seven irregularly arranged oxygen atoms,97 the low 

co-ordination numbers 6 and 7 can be said empirically to pro­

duce decreased term differences, relative to the ordinary 9-co- 

ordinated lanthanide complexes.34’36-68 As discussed by Zaciia- 
riasen,81 the ionic distances increase by 0.11 .4 for the co-ordi­
nation number .V = 9 and by 0.19 .4 for Ar = 12, as compared 

with cations with AT = 0. 'Pho values given by Zachariasen for 
the ionic radii of 6-co-ordinated lanthanides (see Table 8) 

perhaps deviate from those given by Goldschmidt due to this 
effect.

Ephraim explained the shift in wave number as a contraction 
of the lanthanide ion, when influenced by many ligand atoms, 

as found in solvates and in solution. In partly covalent com­

pounds, such as Pi'zOs, PrJ%, PiBr%, and PrClz, the 4/-shell 

was assumed to have a larger radius, corresponding to lower 

wave numbers. It is interesting that the aeetylacelonate Pr ncv/3 

is not very covalent according to this criterion ( fable 1 ). As 

discussed below, Ephraim’s hypothesis is qualitatively correct, if 

restricted to the dilatation in covalent compounds. Plie high 

wave numbers found of the absorption bands of aquo ions and 

double nitrates do not in the author’s opinion depict an active
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influence of the environment; rather the conditions of the free, 
gaseous ion with the highest wave numbers are approached.

Even before the crystal field theory of Betiie,30 Brunetti8 
assumed the observed band shifts of praseodymium (III) salts 
to be due to the strong intermolecular electrostatic fields. How­
ever, while the sub-levels of each level have different energy 
caused by this Stark-effect, the levels can only be moved by 
variation of the central field, as shown below from the theory 
of perturbations.

The shifts found at room temperature are composed of 
changes in the energy differences between the levels 25+1A j and 
changes of the sub-levels of the excited levels and the ground 
level, due to the influence of crystal fields. The sub-levels of a 
given level are usually distributed over a range ~ 200 K. The 
absorption spectra of solids cooled to low temperatures (e. g. in 
liquid helium) are caused by transitions from the lowest sub­
level of the ground-level, since other sub-levels are not suffici­
ently populated in the Boltzmann distributions. Even though the 
lowest sub-level was situated some 50 K lower in the anion 
complexes relative to the aquo ion, it could not explain the ob­
served red shifts between 100 and 1000 K.

Neodymium (III) Complexes.

The excited level 2Pi/2, which cannot split into sub-levels due 
to the Kramers degeneracy, corresponds to a very narrow band 
in (III) ~ 23400 A44. The shift observed of this band is given 
in Table 2 a, while the shift of some other band groups are shown 
for a few anion complexes in Table 2 b. The results are scattered 
around 1 °/o shift and seem to be smaller than in the correspond­
ing praseodymium ( III) complexes (cf. Fig. 1).

Leveling55 discovered that the absorption bands of NdCls and 
AT7(ATO3)3 are shifted towards lower wave numbers for organic 
solvents than for aqueous solutions. Jones et al.39’40’41 thoroughly 
investigated these effects and especially the intermediate spec­
tra of solutions with a few volume °/o water. The exchange pro­
cess of water, alcohols, and anions will be discussed below in 
a separate section. Schäffer78 and Uzumasa91»92 also studied
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Table 2 a. The shift of absorption bands of Neodymium (III) 

complexes.

a: The excited level 2Pl/2 Shift Ref. no.

Aquo ion............................................ 4273 Å 23400 K 0.00 %
Ethylenediaminetetraacetate . . . 4292 105 0.44
Nitrogentriacetate............................ 4293 - 110 0.47
Tartrate.............................................. 4296 125 0.54
Citrate................................................... 4301 150 0.65

4330 310 1.33
4297 - 130 0.56 > 82
4271 + 10 — 0.05Vd+++ in 12 M IICl...................
4328 - 285 1.24
4291 - 100 0.41
4272 -r 5 - 0.02

NdCl3 in CHSOH.......................... 4295 120 0.52 6,39
Nd(NO3)3 in CH3OH.................... 4280 40 0.16 39
3 M Nd(NO3)3 in IHO................ 4280 40 0.16 41,82
Didymium glass.............................. 4312 210 0.94
Nd aca3, anhydrous....................... 4305 170 0.75 21
Nd aca3, 2II,() ............................... 4301 150 0.65 21

4310 200 0.87
Nd aca, in CRIIR, CCI., CS,.

4303 160 0.70 ) 73
or C2H5.I................................. 4297 130 0.56

Nd aca3 in CII3OH ...................... 4302 160 0.68 73
Nd(WrO3)3, 9 II 2().......................... 4273.8 5 0.02 11
Nd(C2II3S()^3, 9 II2O.................... 4279.7 36 0.14 11
NdCl3, 6 II.,() (in La-salt)......... 4283.6 58 0.23 11
NdF3.................................................. 4265 45 — 0.11 17
NdCl3................................................ 4313 215 0.94 17
NdBr3................................................ 4334 - 330 1.53 17
Nd^C,!)^, 10 IPO........................ 4299 - 140 0.61 17
(NHJ, Nd(N03\, 4 11,0............. 4261 65 — 0.28 17
Nd2O3................................................ 4378 — 560 2.46 17,96

this phenomenon and Hartmann and Lorenz28 Xdf'd^ in mix­

tures of waler and formamide.

The acetylacetonate Nd acas lias been studied in a solid state21 
and in many différent solvents.73 Since the dihydrate is rather 

stable,21 and since Xd cica^ seems* to dimerize38 in CCI4 and CS2,

* Note added in Proof: However, Moeller and Ulrich6111 detected no dime­
rization by cryoscopy. These authors compare the solvent effects on acetylaceto- 
nates thoroughly and find much higher intensity of some bands of Nd aca3, Ho 
aca3, and Hr aca3 than of the corresponding aquo ion bands, while other bands 
of these complexes, and all bands of Pr aca3, do not exhibit increazed intensities.
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there seems to be a considerable rest affinity in the 6-co-ordinated

xVd mv/3.
Recently, ethylenediaminetetraacetate and nilrogenlriacetate 

have been discussed by Moeller and Brantley60 and Vickery94 
as a mean for splitting of the absorption bands of lanthanides. 

The low symmetry of the crystal field produces 2 J + 1 distinct 

sub-levels from each level in the case of an even number of 

1
4/-electrons and .7 4- — sub-levels for an odd number of 4/’- 

electrons. However, in many cases, such as Pr enter and (id enter 
studied here, the absorption bands are not conspicuously more 

split than for the aquo ions. Actually, the red shift is the most 

prominent difference between the spectra of AW (I II) anion com­

plexes (such as Nd(SO;))3 ) and the aquo ion.95
If 5 denotes the distance from a maximum with the molar 

extinction coefficient en to the wave number cr, where e = —, 
9 

ô is only 16/< for the 2Pi/2 of the neodymium (111) aquo ion, 
exemplifying the sharpness of transitions between two single 

sub-levels (cf. Fig. 4). The somewhat broader band al 23090 K 
cannot be re-found in the other complexes and is perhaps caused 

by an excited sub-level at 320 K over the ground-level.

Satten75 found the five sub-levels of the ground-level 47g/2 

at 0,1 15,184,363, and 384 K in NdÇBrOz)^, ÿH%0, while Satten 
and Young76 found the sub-levels at 0,76,226,263, and 301 K 
in .57/2(804)3, 8H2O.

Samarium (III) Complexes.

Only the band slightly below 25000 K has been measured 
here. It is presumably44 due to a transition from 6H5/2 to a level 

of 6P. In the aquo ion, the band is symmetrical with 5 = 100 K, 
while it develops a shoulder towards the red in some of the anion 

complexes. The shifts are somewhat smaller than found for the 

soluble complexes of Nd (Ill), while the anhydrous solid com­

pounds17 such as SmClz and SinBr3 exhibit a rather large shift 
towards lower wave numbers (cf. Fig. 1 ).
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Table 3. The shift of an absorption band of Samarium (III) 
complexes.

Shift Ref.

Aquo ion................................ 4012 A 24920 K 0.0 o/o
Ethylenediaminetetra- | 4036 24780 140 K 0.6

acetate ........................... | (4060) 24630 — 290
Nitrogentriacetate................ 4036 24780 140 0.6
Tartrate.................................. 4034 24790 - 130 0.55
Citrate...................................... 4051 24690 -230 1.0
Sm+++ in 12 Af HCl......... 4017 24890 30 0.1
SmCl3..................................... 4080 24510 — 410 1.7 17
SmCl3, 8 Nil3..................... 4037 24770 — 150 0.6 17
Smlir3..................................... 4156 24050 — 870 3.5 17
Sm->()3..................................... 4082 24500 — 420 1.7 17

Gadolinium (III) Complexes.
The Gd(III) aquo ion exhibits a rather complicated spectrum 

in the ultraviolet61*87 consisting of bands with 10—15 K. The 
band groups are assumed44 to have the multiplets and 6/ as 
the excited levels. The spin-forbidden character of the transition 
from 8S7/2 is not evident in the four intense bands. As appears 
from Table 4 and Figure 2, these bands are regularly shifted in 
the ethylenediaminetetraacetate and citrate, while the fine struc­
ture is somewhat blurred out. Nutting and Spedding64 investi­
gated many solid gadolinium (III) salts and found a series of 
increasing wave numbers of the band groups:

Gd (C2W5COO)3, 3H2O < GdCls, (\H2O < Gd2 (SO4)s,
8//2O < Gd(C2H5SO4)3, 9H2O.

Berton and Boulanger3 found the band groups of Gd2()3 shifted 
much more (0.8 °/o) towards lower wave numbers than the other 
anion complexes (~ 0.3 °/o) as seen from Table 4 and Fig. 1. 
Thus, the general trend of strongest red shift of the oxides is 
common to all the lighter lanthanides.

Erbium (III) Complexes.

Selwooi)82 found that for strong nitrate solutions, the bands 
of iVd(III) are shifted towards lower wave numbers, but of 
Ho (I II) and Er (III) towards higher wave numbers. Thus, the
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Figure 2. The absorption spectra of Gadolinium (ill) complexes. The aquo ion, 
the ethylenediaminetetraacetate and the citrate are measured as described in 
the experimental section. The unit of the molar extinction coefficient scale is 1.

decreasing red shift in anion complexes with increasing atomic 

number seems to be reversed in this case. Ephraim, Jantsch, 
and Zapata18 still observed a small red shift in the anhydrous 

halides of holmium (III) and erbium (III). Vickery94 did not 

detect any systematic trend in the wave numbers of Er enta~ and 

Er(H20)N+++- Table 5 gives some of the strongest bands of these 

two complexes. Birmingham and Wilkinson4 did not observe a 
shift in erbium (I II) tris(cyclopentadienide) either.

A similar result is found by Hellwege et al.31-33 for E11CI3, 
6 H2O and £'112^13(^03)12, 24 H2O, where the centres of gravity 

of 52>o, 5Oi, and 5I)i only deviate 0.012, 0.014, and 0.017 °/o 
respectively.
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Table 5. The strongest absorption bands of Erbium (III) 
complexes.

Group no. Aquo ion Ethylenediaminetetraacetate

1................ 6650 1 15040 K 6560 A 15240 K
6520 15340 6540 15290

6505 15370
9 5230 19120 5210 19190

(5210) 19190 5195 19250
5185 19290

3............... 4915 20350 4885 20470
4875 20510

(4855) 20600
1............... 4535 22050 4505 22200

4500 22220
5............... 4070 24570 4075 24540

4055 24660 4055 24660
6............... 3795 26350 (3804) 26290

3788 26400
3780 26460
3776 26480

- 3645 27440 27290
(3640) 27470 3653 27380

3607 27720

Ytterbium (III) Complexes.

Since there is only one hole in the 4/’-shell, only one term 
exists of Äe 4 f13, and the parameters of electrostatic interaction 
F*  cannot be determined. The band group60 with maxima at 
10,250 K (e = 1.7) and 10,620 F (e = 0.6) of the aquo ion is 
therefore caused by the spin-reversing transition 2F?/2 -> 2F5/2. The 
ethylenediaminetetraacetate is not very di lièrent with maxima 
at 10,220 F (e = 1.8) and 10,640 K (e = 0.9). All four bands 
have ô = 150 K.

Freed and Mesirow20 reported broad bands of T6(III) in 
the ultraviolet. Even though the bands were weaker than those 
of Ce(III), they were believed to be [ATjl/’13-> [A”e] 4/'12 5c/ 
transitions. However, the solution of ytterbium (III) perchlorate 
measured here does not show any sign of these bands, and e is 
below 0.1 in the range 25,000—40,000 K. Probably, traces of 
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iron (III) or organic materials are responsible for the frequent 
observation of broad ultraviolet absorption bands of lanthanides 
with higher atomic number than cerium.

Actinide Complexes.

The anion effect seems to be somewhat larger and more varying 
in the actinides than in the lanthanides. The present author43 
reported the bands of the uranium (IV) tetraoxalate ion with 
~ 2 °/o lower wave numbers than of the aquo ion. Similar results 
have been obtained from the solutions in strong hydrochloric 
acid, while the effect is negligible in the ethylenediaminetetra­
acetate. The spreading of the sub-levels of U (IV) is rather large 
as evident from Gruen’s study of fluorides.27 In the chloride 
and nitrate complexes of plutonium (111 ) and plutonium (IV), the 
bands are shifted towards higher wave numbers.81 In a note in 
Acta Chem. Scand., it will be discussed, how the absorption spect­
rum of grey U (III) in HCIO4 or 2-6 MHCl is changed in 
11 MHCl, corresponding to the dark red colour.44

Cerium (III) Complexes.

Freed19 discovered three high and broad bands of Ce (I II) 
in the ultraviolet, which by cooling of Ce(C2HsSO4)3, 9 H2O from 
300° K to 20° K were shifted only 400 K towards higher wave 
numbers. Besides these bands, CeCls, CH2O was found to ex­
hibit a weak band at 33,100 K at room temperature only.

Lang54 found the energy levels of gaseous Ce+++:

[Xe] 4f: 2F5/2 0 K
2F1/2 2253

[Xe] 5d: 2Z>3/2 49737
2D5/2 52226

[Xe] 6s: 2Si/2 86602.

The internal 2F-transition has not yet been identified in cerium 
(HI) complexes, even though the reflection spectrum of an an­
hydrous compound such as CeFs probably would show it. 
Kröyer and Bakker53 estimate the splitting of the doublet as 
1900 K from the emission spectrum of fluorescent cerium (III) 
compounds.
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The strong bands have as excited levels the term -1), split by 

the crystal field. Due to Kramers’ degeneracy, no more than five 

levels are possible for any symmetry of the complex. Five bands 

are known of the aquo ion, according to Stewart87 and Heidt 
and Berestecki29 (see 'Fable 6 and Fig. 3). It is evident that the 

centre of gravity of these levels are situated some thousand K 
below 51,230 A' from the gaseous ion.

Table 6 demonstrates that the anion effect in Ce (III) com­

plexes is composed of two phenomena: the average distance be­

tween the electron configurations [AT] f/’and [AT] 5 c/ is decreased, 

and the crystal field splitting of [AT] 5 c/ is changed with resulting 

variation of the relative positions of the strong absorption bands.

The two strongest absorption bands of the cerium (III) aquo 

ion are shifted ~ 4000 A' towards lower wave numbers in the 

case of ethylenediaminetetraacetate, nitrogentriacctate, and ace­

tate complexes (Table 6). Thus, in the latter complexes, the di­
stance between the electron configurations [AT] 4/’ and [AT] 5 c/ 

is roughly 72 °/o of the distance in the gaseous ion, while in the 

aquo ion the value is 83.5 °/o, if the band at 39,500 A is assumed 

to be doubly degenerate, and the small band at 33,700 A is not 

reckoned, as rationalized below.

Fried and Hindman22 found a close analogy between the 
absorption spectra of protactinium (IV) and cerium (HI), im­
plying the ground state [A’/n] 5/’of the former ion. Thus, the two 

aquo ions have probably the same co-ordination number, 8 or 

9. There does not seem to be a small band of Pcz (IV) al a low er 

wave number than the strong bands, which are situated22 at 

36,300 A, 39,200 A, and 44,800 A with 1500, 1000, and 400, 

respectively. Thus, the spreading of the three bands in Pcz (IV) 

is 8600 A, while the analogous distance in Ce (III) is 5600 A’. 

This increase in the crystal field strength, amounting to 54 °/o 

from 5 c/- to 6 (/-electrons, can be compared with the crystal field 

strength, denoted by (Ai— E2) in octahedral c/”-complexes, 

which have the ratios 1.00:1.45:1.75 for 3d-, 4c?-, and 5 c/- 

electrons, respectively.47’50 The absolute value of the crystal field 

splitting of [AT] 5 c/ in CT (III) and of [Em] Ç>d in Pcz (IV) is rather 

low', as compared w ith (Ei— AT)~ 20,000 A of titanium ( 111 ) 

and other trivalent hexaaquo ions. The small values found for 

cerium (Ill) may be explained by three causes: the symmetry
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of the crystal field may produce a low over-all splitting (especially, 
if it approximates spherical symmetry); and ions with no crystal 
Held stabilization of the ground state usually have comparatively 
small values of Hie crystal field strength. This may be ascribed 
to the decreased distances to the ligands in the stabilized com­
plexes and perhaps also to partly covalent bonding, i. e. inter- 

.5 
mixing of molecular orbitals. Thus, the d5-svstems with 5” 2
are not stabilized, and (Ei — E2) is only 7800 K for manganese 
(II) and 13,700 K for iron (111) hexaaquo ions.50 Finally, the ionic 
radius of Ce (III) is considerably larger than that of most other 
trivalent ions with partly filled shells.

The Possibility of an Equilibrium between Cerium (III) 
Aquo Ions with Different Co-Ordination Number, and the 
Absorption Spectra of Lanthanide Chlorides in Aqueous 

and Alcoholic Solutions.

The band at 33,700 71 of cerium (111) aquo ions has only an 
intensity ~ 3 °/o of the other bands. It may be caused by a com­
paratively rare geometrical configuration in equilibrium with the 
other Ce(lII) complexes. J. Bjerrum5 suggested that aquo ions 
with different co-ordination number A can be in equilibrium in 
solution, e. g. zinc (II) with four or six water molecules. Ana­
logously, the common form of cerium (III) aquo ions might have 
AT = 9 (as found34 in NdÇBrO^s, QH2O) and the rare form might 
be octahedral with N = 6. Heidt and Berestecki29 studied the 
spectra of 0(6/04)3 in solutions of HCIO^ and NciClOi. £1 of the 
small band at 33,700 K is further diminished, and the presence 
of an isosbestic point supports the formation of only one complex 
CefElOt) (H2O)++. However, a surprising effect was reported: 
£1 of the aquo ion is raised from 18 to 26 by warming the solution 
from 16° C. to 54° C., while the intensity of the strong bands is 
not noticeably changed. The present author has found a similar 
result for 0.03 3/ CeCls in H2O.

If the oscillator strength of the small band does not vanish 
for accidental reasons such as a selection rule for transitions in 
the crystal field,30 the temperature effect is almost a proof of the 
existence of an equilibrium, where the complex giving the small 
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band is formed under absorption of heat, probably with a lower 
co-ordination number than the common form. Spedding el 
al.84,85,86 assume that the lighter lanthanides may have a higher 
co-ordination number in solutions than the heavier lanthanides, 
since the ionic conductances and thermodynamic functions are 
not monotonous functions of the atomic number, and since36 
La+++ in L<72(>SO4)3, QH2O has partly A7 = 9, partly N = 12.

The small band of CeC/3 in 63/ HCI is ~ 2 times higher than 
the band of the aquo ion, analogously to the result of Newton 
and Arcand63 for CeSOi+. In 12M HCI, the small band has in­
creased to be as intense as the other bands, and it is shifted 
1300 A towards lower wave numbers (Figure 3 and Table 6). 
Since the second band has had no large tendency to move, the 
chloro complexes in strong HCI can be assumed to have the low 
co-ordination number. 0.002 3/CeC/3 in ethanolic solutions ex­
hibit a similar development when the water content is removed. 
Thus 10 volume °/o water produces ei — 100, rather indepen­
dently of the chloride concentration, if added in excess, while 
the absorption spectrum of 0.0023/CeC/3 in 2 °/o H2O*  much 
resembles the spectrum of CeCls in aqueous 123/ HCI. It might 
seem reasonable to ascribe the variations of absorption spectrum 
of ethanolic CeCl% by addition of small quantities of water to the 
exchange of C2H5OH and H2O in the first co-ordination sphere 
without the interference of chloride ions. However, since CeÇClO^a 
exhibits a much smaller band at 33,400 K in 98 °/o C2H5OH, the 
ethanol solvate of CeC/3 must be assumed to contain at least one 
chloride ion.

Katzin51’52 discovered anion complexes (in organic solvents) 
the formation of which is much more dependent on the absence 
of water than on the presence of a considerable excess of the 
free anion. The system CeC/3, C2H5OH, H2O is a new member 
of this class. Thus, 0.00043/CeC/3 in 99.5 °/o C2H5OH is seen 
from Table 6 to form the chloride-ethanol complex to a high 
extent, while in aqueous 0.63///C/, the formation constant57 
of CeCl++ is only 3.

The situation cannot be described only on the assumption 
that the order of bonding to metal ions is

* This is the explanation of the new band reported of PrClz in absolute etha­
nol.39

2*



20 Nr. 22

alcohol < anion < water,

since alcohol distinctly is not 1000 times more weaklv bound to 

metal ions than water, but only ~ 10 times more weakly bound

Figure 3. The absorption spectra of Cerium (III) complexes. The first part gives 
the spectrum of the aquo ion, the second part the nitrogentriacetate and the 
ethylenediaminetetraacetate. The third part gives the spectra of the following 

solutions in aqueous ethanol:
Curve 1: 0.0004 M CeCl3, 0.3 M II.O 

2: 0.002 M CeCl3, 1 M II2O ~ 
3: 0.002 M CeCl3, 5M II.O.

per molecule.6’45’51 Rather, the formation of anion complexes 

serves as indicator for the ethanol solvation, since the pure ethanol 

solvate is much more unstable towards uptake of anions, rela­

tive to the aquo ion. In the case of cerium (111) the high co­

ordination number (nine?) cannot be obtained with ethanol 
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molecules alone. The characteristic property of water as an 
ionizing solvent is its ability to replace all the anions in the 
first co-ordination sphere of a metal ion in solution or in salt 
hydrates, rather independently of the dielectric constant.

In the case of NdClz in alcohols with a small content of 
water6*39’40’41 it cannot be excluded that the anhydrous form is 
actually a mixed chloride-alcohol complex. Thus, the behaviour 
of Xd(X()z)3 and XdCl3 in ethanol highly resembles the solutions 
in concentrated HXOz and HCl, respectively. Thus, Quill and 
Selwood71 found a shift 30 K and broadening of the 2Pi/2 band 
of Xd( III ) in 163/ HXO3, while three bands with a larger distance 
are exhibited in 12 3///67 (Table 2 and Figure 4).

* as suggested by the fact (Table 6) that the high Ce (III) bands are identical 
in aqueous 0-5 M hydrochloric acid.

The somewhat narrower band of the A7/(III) aquo ion is 
not changed in 63/ HCl, while the effect of nitrate is observed in 
much more dilute solutions. Il is rather surprising that the neo­
dymium (III) spectrum is not changed until two or three chloride 
ions are taken up, as extrapolated from the equilibrium constant 
for CeCl++ (if the latter does not refer to some association of 
chloride ions*  in the second co-ordination sphere). Thus, the 
spectral change may very well be connected with a dehydration, 
leading to a lower co-ordination number. The third band of 
XdCl$ in 12 M HCl, which has a wave number even 80 K below 
the band of anhydrous XdCl%, can of course belong to an excited 
sub-level of the ground-level. Figure 4 gives the absorption 
bands of A7/(III) in aqueous hydrochloric acid of varying con­
centration.

The reflection spectra2 of Xa2Ce(XO3)$ and 3/7302(3/03)12, 
24 H2O exhibit absorption edge at 27,000 A’, while the edge in 
the corresponding lanthanum(III) compounds is situated at 
33,000 A. Even though the nitrate ion has a band at the latter 
position, there seems to be a specific cerium (III) nitrate absorp­
tion band. A similar case is encountered2 in the oxalate 02(0204)3, 
9//2O with the edge 27,200 K, while the other lanthanide oxa­
lates have edges above 37,000 A.
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Red Shifts of Emission Bands of Fluorescent Cerium (III) 
and other Lanthanide Compounds.

Orgel66 explained the shift of emission bands of fluorescent 
and phosphorescent manganese (Il ) compounds to lower wave 

numbers than those of the absorption bands by means of the 

Franck-Condon principle. The excited levels have another 
equilibrium distance of the ligands than the ground level, if the 

two levels have a different crystal field stabilization, and there­

fore the transition by emission from the excited level corresponds 

to an energy difference ~ 2000 K too small.

Gobrecht25 and Mukherjee62 observed fluorescence of 
cerium (Ill) in crystals and in solutions. The emission band is 

rather broad, with the maximum at 28,000 K. If the correspond­
ing absorption band is the small band discussed above, the red 

shift is ~ 5000 K. Kröver and Bakker53 investigated the fluores­
cence of many other cerium (III) compounds and found two 

exciting wave number ranges.

Also the other [Xe] 4/* w_1 5d states of the lanthanides can 

decay with emission of light, which is shifted towards lower 

wave numbers. Przibram69»70 recognized these excited electron 
configurations in divalent lanthanides, which occur as traces in 

fluorite. Thus, Szn++ gives an emission maximum at 15,900 A', 

Eu++ at 23,800 A", and )7>++ at 17,500 A\ This is in all cases 

~ 0000 K below the corresponding absorption maxima.
On the other hand, the fluorescence of gadolinium ( 111 ) 

salts3’89 occurs at almost the same wave number as the absorp­

tion, because neither the ground state nor the excited level is 

stabilized by the crystal field. In the case of Szn+++, Eu+++, and 
/A/+++, the emission ends with excited multiplets of the con­
figuration [Äe]4/’rt.

Phe Integrals of Electrostatic Interaction between Electrons.

In the theory of Slater, Condon, and Shortley9 the distan­
ces between the centres of gravity of the different terms (with a 

definite S and L) of a given electron configuration can be ex­

pressed as multiples of the integrals Ek, which can be written 
for equivalent electrons:9
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(1)

e is the electronic charge and R is the radial wave function. For 
the energy differences of /^-systems, the integrals with k = 2, 
4, and 6 are of consequence.

For isomorphous radial wave functions, which can be trans­
formed to each other by change of the unit of distance r, the 
ratios between F2:F4:F6 will be identical, and the integrals Fk 
will be inversely proportional to a characteristic radius, e. g. 
rmax with the maximum value of R2.

If the electron was concentrated on the surface of a sphere 
with radius ro, the integrals Fk would all be identical and equal 
to the integral

f°°F2 e2
W = e2 \ —dr; in casu W = —. (2)

.'o r ro

For all other radial functions R, a set of inequalities will be valid:

W > F° > F2 > F4 > F6 > . . . (3)

However, for reasonable functions R, the decrease of Fk with k 
will not be very great. Therefore, the present author44 and 
Judd42 emphasized that the ratios F2:F4 and F4:FG are only 
semi-adjustable parameters ; it is objectionable to admit F2 ~ 
F4 ~ 10 F6 as maintained for the configuration [Aejd/2 of La+, 
which must be strongly perturbed by electron configuration inter­
actions.9 Trefftz90 calculated for hydrogen-like 4 f-wave func­
tions

F2 = 0.45 VV; F4 = 0.30 W; and F6 = 0.22 W. (4)

As shown below, this slow decrease of F*  with increasing k is 
present for most radial functions R rather independently of the 
shape. Thus, the observed values of Fk can be translated to 

.. e2
characteristic values of radii ro = — by extrapolation to Vv.

We consider the “rectangular” function

R2 = -------- for 1 < r < n, and elsewhere R2 = 0. (5)
h - 1
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'fhe integrals Fk are then for Â-> 0 :

while for k = 0

and

9
F° =------------(/j - 1 - In n)

(n -l)2

IV =
In n

n - 1 *

(6)

(7)

(«)

For the limiting case, R- a delta function as discussed above, 
n can be set = 1+6. Then the series, valid also for k = 0, is:

Table 7 gives the numerical results for n = 2, 3, 5, and 10 for 
several of these integrals. It is seen from 'fable 7 that the de­
crease, represented by the inequality signs in eq. 3 is more pro­
minent, the higher n, i. e. the broader the wave function. The 
values in eq. 4 for hydrogen-like 4/-wave functions correspond 
rather closely to a value of n = 3.1 for the „rectangular” ap­
proximation of eq. 5, while hydrogen-like 3 (/-wave functions 
with F2 = 0.41 IV and 774 = 0.27 IV (see ref. 4) correspond to 
n — 4. For hydrogen-like /-wave functions, the integrals Ffr 
diverge for k~>2l + 2, while F*  is defined for all k in eq. 6. 
However, this does not seem to be of consequence for the allowed 
ratios between F*.  If the radial wave function has maxima for 
two or more values of r, the decrease of F*  relative to IV will 
generally be more pronounced. This case is realized46 for 4 <7-, 
5(/-, . . . 5/*-,  . . . electrons, since the number of maxima of a 
hydrogen-like (nf)-wave function is n — I ; and for covalent 
bonding, where the linear combination of atomic orbitals have
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Table 7. Numerical values of the integrals Fk and IV, derived 
in eqs. 6, 7, and 8 for the rectangular wave function, defined 

in eq. 5.

R = 2 3 5 10

w.............. 0.6932 0.5493 0.4024 0.2558
F° ........... 0.6137 0.4507 0.2988 0.1654
F2 ........... 0.4167 0.2593 0.1467 0.0700
F* ........... 0.3062 0.1753 0.0938 0.0432
F*  ........... 0.2388 0.1310 0.0686 0.0312
F*  ........... 0.1945 0.1042 0.0538 0.0243
F10........... 0.1637 0.0864 0.0433 0.0200
F2/W . . . . 0.602 0.472 0.366 0.274
F*/W  .... 0.442 0.320 0.234 0.169
F6 /W .... 0.345 0.238 0.171 0.122

maxima both in the central ion and in the ligands. If the square 
of the radial function F2 is distributed on several peaks with 
the areas An, arranged according to increasing values of rn, 
an approximate expression will be:

The first part of eq. 10 is derived from the series in eq. 9 for a 
peak with width ôn, while the second part can make the further 
approximation of assigning the width ôn — 0 to the individual 
peaks An.

Condon and Siiortley9 divide the integrals F*  by denomina­
tors I)k in order to get integral values of the multiples of the new

F*
integrals F*  = — . Thus, these authors define for /‘-electrons

F2 = 225 F2; F4 = 1089 F4: and F6 = 7301,64 F6 , (11) 

while for (/-electrons

F2 = 49 F2 and F4 = 441 F4. (12)
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The Decrease of Fk in Complexes.

According to eq. 1, the observation of different values of F*  

in various complexes of the same central ion can easily be inter­

preted as a variation of the average radius of the electron cloud. 

This can either be caused by a general expansion of the electron 

cloud, conforming to some sori of „electroneutrality” principle,50 

or to a transport of a certain amount of the wave function into 

the region of the ligands.67

Actually, some kind of covalent bonding is present if defined 

as more negative charge being present between the nucleus of 

the central ion and the electron considered than in the correspond­

ing gaseous ion. This follows from the theory of perturbation: 

The electrostatic potential U from a spherical surface with radius 

ro and charge e is constant inside the sphere, and continuously 
approaching zero outside the sphere:

e e
U = — for r < ro and U = - for r > ro. (13) 

ro r

Thus, if any wave function is totally imbedded in the sphere, 

i. e. /? = 0 for r > ro, the perturbation energy delivered by the 
potential of eq. 13 will be a constant. Only if the wave function 

slightly penetrates into the volume with r > r0, the perturbation 

energy will decrease, if the charge e is negative.

Schläfer79 observed that the term differences in the spectra 
of manganese (11 ) chloride solutions decrease for increasing chlo­

ride concentrations. The present author49 maintains that these 

phenomena can rather be ascribed to formation of complexes 

MnÇH2Ü)5Cl+ and Mn(H2O)tCl2 than to a physical salt effect. 

However, Schläfer79 investigates an electrostatic model for this 
variation of the term differences, which is quite interesting. For 

numerical calculations, he uses the ns-levels of a hydrogen atom. 

This choice is provoked by the results, valid for crystal fields 

which have no spherical symmetry: The crystal field from a 

distribution of electrical charges is generally expanded in a 

series37: Go, representing the action on a charged sphere, G2, 
and 6’4. The first contribution is very large, but not measurable, 
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because it appears identically in the energy of any level of the 
central ion. The parameters G2 and 6’4 have the weighted average 
contribution zero for the levels, split by the crystal field. .Thus, 
C12 and G4 are of no consequence for the ns-levels, which cannot 
be split.

The result of Schläfer that a Debye-Hiickel potential of the

and a crystal lattice with the anions nearest to the central ion both 
decrease the energies of the excited hydrogen levels, and most 
for the highly excited levels, is a paraphrase of the action of 
negative charge between the nucleus and the electron. The 
Debye-Hiickel potential of eq. 14 can only be created by a charge 
distribution, which partly presents also small values of r, cf. eq. 13.

Now, the observed decrease of Fk can be formulated in two 
ways: either the electron considered is partly present in the 
domain of the ligands, or electrons from the ligands have partly 
invaded the central ion.

The first possibility has been discussed as formation of 
molecular orbitals 9/3 by linear combination of d-orbitals from 
the central ion and some distinct orbitals from the ligands.67’88’93 
If the intermixing of d-orbitals is so great that the part x of the 
anti-bonding orbital occurs in the ligands and the part (1 — x) 
in the central ion, then Fk will to a first approximation be mul­
tiplied by (1 —.r)2, according to eq. 10, since rm is much larger 
than ri. Thus, the most complete intermixing with .v = 0.5 (when 
the unperturbed orbitals have the same energy) will imply Fk 
slightly over 25 °/o of the value, found in the gaseous ion. These 
conditions hardly prevail even in Co(CN)^ ~ or RhCl^ . The 
latter arguments are not changed much49 by the consideration 
of the large overlap integrals 0.4—0.7, which occur between the 
d-electron and the orbitals of the ligands, if the Pauling case 
is approached.

The second possibility does not necessitate that the covalent 
bonding occurs in the 9/3-orbitals in the case of d-electrons. Any 
other kind of bonding, e. g. of even yi and odd y4-orbitals, for­
ming the s- and /Aparts of Pauling’s sjD3d2-hybridization,47 can 
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increase the electron density, producing the central field in the 

theory of Coxoox and Shortley.9 Orgel65 compared the screening 
effects of «-electrons in the electron configurations of gaseous ions 

]A] 3 dn 4 s and A] 3d" 4.s'2 relative to [A] 3d” with the analogous 

effect of covalent bonding. Thus, the small decrease of Fk in

Xe 4/'"-complexes do not necessarily imply the beginning pre­
sence of 4/-electrons out in the ligands, but can as well be ascri­

bed to the effective charge of the central ion being diminished 

by more conventional forms of covalent bonding. Since Fk is 

roughly proportional in the lanthanides to Zq, the external 

charge plus one,46 a decrease in Fk amounting to 1 °/o corresponds 
to an effective charge 2.96. It would be interesting to extrapolate 

to the value of Fk in the gaseous ions of the lanthanides from 
the observed differences for aquo ions and anion complexes. 

It would not be expected from the (/"-systems that the shift 

gaseous ion -> aquo ion would be more than three times as large 

as the shift aquo ion anion complex. The diminished term 

differences between [Xe ] 5 d and [Xe 4 f in cerium (III) com­
plexes reported above disclose a similar effect.

In the theory of absorption spectra of the transition group 

complexes, the interest has been concentrated much more on the 

energy levels than on the wave functions. However, in the dis­

cussion of covalent bonding, evidence from paramagnetic re­

sonance and its hyperfine structure*,  due to the ligands’ nuclei, 

can be very valuable.67 A very interesting discovery was made 

by Shull, Strausser and Wollan,83 who found the 3 (/-wave 
function of manganese (II) compounds from the neutron dif­

fraction of these paramagnetic materials. The wave function has 

/’max = 0.6 A and vanishes more rapidly for large values of r 
than Hartree’s self-consistent 3(/-wave function.

Actual Values of Fh in the Lanthanides.

The absorption spectra of trivalent lanthanides44’75 have 

provided values of F*  for the [Xe] 4/’"-systems, which according 

to eq. 4 and Table 7 can give information about the average 

radius (or rather the average reciprocal distances) of the /’-shell. 

The distances between the terms with the maximum value of S,

* cf. the recent study88*1 of Mn(II), Fe(II), Co (II), and Cr(III), imbed­
ded in Zn F2.
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5 Fa + 6 F4 91 I?6. However, there is no doubt44 that the single 
parameters can reliably be isolated by assuming eq. 4 or slightly 
higher values of Fq-.F^. Thus, the terms with lower S in praseo- 
dymium(III) and neodymium (III) can then be explained, and 
the sextet terms in gadolinium (III) also imply a value of F 
which agrees with the 
gives 
It is 

2, 
neighbouring lanthanides.42’44 Table 8 

the values of F2, which probably are not 10 °/o in error, 
remarkable that Ffc does not increase much in the range

from Pr(III) to 7)p(III). If IV is assumed to equal 2 F2, values 
of ro can be inferred as given in Table 8. The value of ro ~ 0.8 .4 

Table 8. Observed values of Fk and crystallographic radii of the 
trivalent lanthanide ions. The average radius of the 4 /'-shell ro 

derived from eq. 2 and the assumption IV = 2 F2.

F2 'o

Ionic radius

Zaciia-
RIASEN81

Gold­
schmidt26

/2 La+................................ 21000 K 2.8 A 1.6 A extrapolated 
from Cs+

jz pr+++ 69000 0.84 1.00 A 1.16 A
f3 Nd+++ ......................... 72000 0.80 0.99 1.15
f'° Sm+++ ......................... 72000 0.80 0.97 1.13
R Gd+++ ........................... 76000 0.76 0.94 1.11
R Dy+++ ........................... 78000 0.74 0.91 1.07
R2 Tm+++ ....................... 98000 0.59 0.86 1.04

giving the strongest absorption bands, are multiples72’80 of

is somewhat smaller than the crystallographic radii, as given in 
Table 8. Thus, the /-electron can be said to be mainly incorpo­
rated in the kernel,46 while4 La+ with F2 = 21,000 K under the 
same assumptions corresponds4 to ro = 2.8 Å Goeppert Mayer56 
predicts a rather drastic change of the screening conditions for 
4/'-electrons at the beginning of the lanthanide group. The po­
sition calculated of the “inner” /’-electron at 0.22 .4 in La and 
0.17 A in Nd is undoubtedly too small. The values observed of 
Ffc are not compatible with a smaller ro than 0.5 A in the trivalent 
lanthanides. Since the 4/'-wave functions in complexes cannot 
be as broad as the hydrogen-like ones, where R2 has half the 
maximum value for r = 1.5 rmax, lower values of n from Table 7

1 A hydrogen-like 4/-electron with Z( 2 has r0 = 4.23A.
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are suggested for the complexes supporting Ibis conclusion. In 
the first transition group F2 and F4 are approximately propor­
tional9 to Zo, the external charge plus one, in the d2-systems from 
Sc+ lo A7+8. The values observed are F2 = Zo • 1 7,000 A' and 
F4 = Zo' 13,500 F, while a hydrogen-like 3d-electron has 
F2 = Zo- 9950 K, F4 = Zo. 6490 F, and IV = Zo. 24,390 F. In 
gaseous ions such as Cr+++ or ATi++, the value of F2 is ~ 70,000 F. 
If IV is assumed to be 150,000 F, the effective radius /’o will be 
116,000/150,000 = 0.77,4. Since F2 is decreased in nickel(II) 
and chromium (III) complexes, the corresponding values of 
7’o > 1 ,4 are definitely larger than the crystallographic radii, 
suggesting a partly covalent bonding of the type described by 
eq. 10.

Experimental.

Cerium (III) solutions. CeCl3, 6 H2O was recrystallized by satur­
ation of the solution with hydrogen chloride gas at 0° C. This 
removes iron (111) efficiently, while considerable amounts of 
other lanthanides were present in the crystals. However, the 
latter do not influence the spectrum in the ultraviolet. Solutions 
of tartrates and citrates in aqueous ammonia are rapidly oxidi­
zed to yellow cerium (IV) complexes, while ethylenediaminete­
traacetates and nitrogentriacetates (made from 0.2 M Neu enta 
and 0.2 4/ Nagata, both of “Komplexon” quality) are much 
more slowly oxidized. The acetate complex was measured in 
2 M CH3COONH4, 2 M CH3COOH.

The consecutive formation constants of the cerium (III) sul­
phate complexes23 in 1 M NaClO^ are: CeSO^ : 43, Ce(SO4)2 :5, 
and Ce(SÖ4)3~3:6, while in dilute solutions the first formation 
constant86 is 2600. The consecutive formation constants of ace­
tate complexes24 are 48, 10, 3.2, and 2.

Since the neutral cerium (III) citrate is feebly soluble, the 
easily soluble complex in alkaline solution probably contains two 
citrate groups.1 Boulanger7 demonstrated the formation of lan­
thanide complexes with two nitrogentriacetate groups, while the 
ethylenediaminetetraacetates do not seem to read with excess of 
the reagent.59
Praseodymium (III) solutions. Pr60n was supplied by Thorium 
Ltd., London. From the absorption bands at 7400 and 2540 ,4
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Figure 4. The absorption spectra of Neodymium (III) in hydrochloric acid. 0.38 M 
didymium chloride, as described in the experimental section, dissolved in the 
following solutions:

II.,0 Curve 5 9.5 M HCl
6.2 M HCl 6 10.3 M -
7.4 M 7 11.0 AZ -
8.9 M - 8 1 1.3 M -

1.9 M didymium chloride in II2O gives in 2 cm cells a spectrum identical with 
Curve 1, which was measured as the other curves on the figure of solutions in 

10 cm cells. The neodymium content is 54°/0 of the didymium mixture.

it was found to contain less than 0.7 °/o Nd and 0.015 °/o Ce. The 
double band in the far ultraviolet, reported by Stewart,87 was 
observed as a single band at 2148 .4. A solution was prepared, 
0.2 M Pr(ClOz)3, 0.4 .1/ HCIO$, and added to solutions of organic 
acids in NHs and NcizCOa, as described above.
Neody (Hl) solutions. Technical Didymium Oxide B, as 
supplied by Thorium Ltd., London, was used for most measure­
ments, because the Nd (III) bands studied are free from inter­
ference with bands of the other lanthanides. The lanthanide 
composition is 1 °/oCe, 10 0/0 Pr, 54 °/o A57, and 11 °/o Szn, as 
estimated from spectrophotometry. The rest is mainly La. The 
absorption spectrum of the ethylenediaminetetraacetate was 
shown to be independent of addition of aqueous ammonia, when 
pH was higher than 8. But the solid salts, which can be crystal­
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lized and which dissolve in water, giving pH ~ 5, show a different 
spectrum with more lines, which is changed on addition of base. 

Probably, the latter solution contains a mixture of complexes, 

i. e. some carboxyl groups are not co-ordinatively bound and 

have taken up protons.

Berzelius observed that didymium tartrate, dissolved in 

aqueous ammonia, by evaporation of the highly viscose solution 

at room temperature forms a transparent, glassy material. If the 

latter is dissolved in some water, it gives the same absorption 

spectrum of a mixed solution of DiCis, NHz, and ammonium 

tartrate.

Solid Diacaz was precipitated from the stoichiometric amounts 
of acetylacetone, didymium chloride and aqueous ammonia in 

90 volume °/o ethanol. It was observed that the oscillator strength 
of the peak at 5710.4 and the broad band ~ 5800 .4 is roughly 

10 times that of the band group ~ 5750 .4 of the aquo ion. Else, 

the oscillator strengths*,  i. e. the areas of the bands, do not vary 

much for various neodymium (III) complexes.

Two crystals of the size 3 X 3 X 2 cm3, of (.¥7/4)2 DiÇNOa)^, 
.v H2O were measured in the spectrophotometer. They both con­
firmed the blue shift of the 4265 and 4255 .4 band group.17 

However, some other band groups were different in the two cry­
stals. Thus, bands were found at 7310 and 7440 .4; and 7310 

and 7470 .4, respectively.

The bathochromic effect of the decreased in AW2O3 is 

clearly demonstrated by the bright blue colour96 in contrast to 

the other pink neodymium ( 111 ) complexes.

Samarium (III) solutions. 99 °/o S7212O3 from Thorium Ltd., Lon­

don, and a fraction from re-crystallization of magnesium double 

nitrates (Miss Merete Wich ff. i.d assisted in its preparation) 

were used for some measurements. However, for the study of 
the strong band at 4020 .4 the didymium solutions mentioned 

above were sufficient, because the other lanthanides do not 

disturb this band.

Gadolinium (III) solutions. 200 mg (Ù/2O3 (from Universitetets 

Institut for teoretisk Fysik) was disolved in 2.5 ml 2 M HCIO4 
and diluted to 3.1 ml in the absorption cell. The ethylenediamine-

* Merz58 reports that the oscillator strength of the bands of Afÿ3Pr2(.VO3)12, 
24 H2() is ~ 20 times smaller than of Pr2(SOp3, 8 H2O, and Pr(C2//5SO4)3, 9 II2(). 
Cf. the foot-note p. 8.
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tetraacetate was prepared by neutralization of a part with XH% 
and addition of a slight excess of Na^enta, while another part 
was added to aqueous ammonia and citrate. It was not possible 
to dissolve Gd(OH)s to a large extent in XH3 and tartrate.
Erbium (III) solutions. A sample of E^Os, Y2O3 etc. from S. M. 
Jørgensen, and some fractions prepared by Miss Karen Jensen 
(now Mrs. Kümmel) from gadolinite supplied by Konservator 
K. Kristoffersen, Norges mineralogiske Museum, were used for 
the measurements.
Ytterbium (III) solutions. 200 mg Y/?2^3 (from Universitetets ln- 
stilut for teoretisk Fysik) was boiled with 3 ml 2 M HClOi for 
several minutes, until it suddenly passed into a clear solution. 
It was diluted to 3.1 ml in the absorption cell and later also 
measured as Yb enta~.
The spectrophotometer was the Cary recording model 11 MS-50. 
For standardization of the wave-length scale, the 2Pi/2 band of 
the neodymium (I II) ion was assumed to be situated at 4273 A 
in general agreement with the literature. In the ultraviolet, mer­
cury vapour (in a 10 cm cell at room temperature) was found 
to give the 2536.5 A line very sharply. The measurements of the 
narrow bands were made with the lowest possible scanning speed 
and recorded with the tungsten lamp 8000—3250 T (12.5 A per 
division = 0.83 cm of paper) and with the hydrogen lamp 
4000—2050 A (5 .1 per division). The slit control was set at 10. 
The relative shifts of the narrow bands can be measured with 
an uncertainty ~ 1 A. The shift 23 .4 of the narrowest band of 
neodymium (III) tartrate was also found with a Beckman DU 
spectrophotometer. The latter instrument was used for the 
measurement of 17? (Ill) in the infra-red.
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Summary

The narrow bands caused by internal /’"-transitions in Pr(III), 

AW(III), Sm(III), and G’d(IU) are shown to be shifted ~ 1 0/() 

towards lower wave numbers in complexes with ligands such 

as ethylenediaminetetraacetate, nitrogentriacetate, tartrate, and 

citrate, relative to the aquo ions. Ephraim et al. have previously 
demonstrated even larger shifts in the reflection spectra of oxides 

and anhydrous halides. Even though the sub-levels of the ground 

levels can be distributed in a different way for the complexes, 

the main part of the red shift is due to a decrease of term dif­

ferences. These can be interpreted as multiples of the parameters 

of electrostatic interaction between electrons, F*,  as defined bv 

Slater, Condon, and Shortlev.
The high and broad absorption bands of cerium (HI) com­

plexes, due to 4 f -> 5 d transitions, are shifted much more in 
anion complexes. One of these bands is comparatively low, and 

its change with temperature suggests the presence of a Ce (III) 

aquo ion with a low co-ordination number in equilibrium with 

the more common form. CeCh in anhydrous ethanol develops 

a new band, which disappears by addition of water. Since 

Ce(C/O4)3 exhibits another behaviour, the new band is presum­

ably due to a complex with chloride and ethanol whose formation 

is much more sensitive to addition of water to the solvent than 

to the chloride concentration. (Thus, the absorption spectrum 

of 0.0004 4/ CeCl% in ethanol resembles that of Ce (III) in 12 4/ 
ZZCZ).

It is further shown that the fluorescence of excited [Äe] df"-1 5cZ 

levels in the lanthanides exhibits the red shift discussed by 

Orgel in the case of manganese (I I) complexes.
The FÂ' integrals are shown to decrease smoothly with in­

creasing k, rather independently of the wave function assumed 
for the electron in the partly filled shell. Thus, the ratios F2:F4 

and F4:F6 are only semiadj ustable parameters, as previously 

maintained. From the observed values of FA‘ in transition group 

complexes, the average radius of the wave function can be 

estimated. In trivalent lanthanides this radius varies slowly 
around 0.8 .4 in the series from Pr(lll) to Fy(III), approaching 

0.6 .I in Tin (III). This is somewhat less than the crystallographic 
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radii of trivalent lanthanides, indicating no large screening. In 
La+, the 4/’-electrons with radius = 2.8 A are distinctly external 
electrons. Since the ionic radii are particularly small in Pr^Os, 
Nd^Os, SmzOs, and Gd^Oa with the low co-ordination number, 
this may explain the large decrease of Fk in these solids. In all 
cases, the decrease of Fk is most conspicuous in Pr(III), where 
the two 4/‘-electrons are least shielded.

The increased effective radii of the (/-shell in (/^-complexes 
due to covalent bonding do not necessarily imply the intermixing 
of the (/-electrons with the electrons of the ligands, since the 
central held can be changed by filling of bonding molecular 
orbitals of other symmetries. However, the values of Fk are so 
small, even in the gaseous ions, that the (/-shell must penetrate 
into the domain of the ligands, thus forming partly covalent 
bonds.

Chemistry Department A,
Technical University of Denmark, Copenhagen.
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